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Abstract

Multi-hop reasoning approaches over knowledge graphs infer a missing relationship between

entities with a multi-hop rule, which corresponds to a chain of relationships.

We extend existing works to consider a generalized form of multi-hop rules, where each rule

is a set of relation chains. We propose a two-step approach that first selects a small set of

relation chains as a rule and then evaluates the confidence of the target relationship by jointly

scoring the selected chains.

A game-theoretical framework is proposed to this end to simultaneously optimize the rule se-

lection and prediction steps. Empirical results show that our multi-chain multi-hop (MCMH)

rules result in superior results compared to the standard single-chain approaches.

Introduction

Our model utilizes deducible paths of tuples to do reasoning. We propose the concept of MCMH

rule set, a set of multi-hop rules. Multiple chains leverage the inference in two ways:

Logic conjunction of multiple chains (Figure 1b);

Aggregation of multiple pieces of evidence (Figure 1c);

Figure 1:Examples of reasoning with multiple paths. Solid lines are selected paths (different colors indicate different

paths), and dotted lines are unselected paths.

AThree-Player Game for Rule Learning

The input is a set of chains Ri ⊂ R for relation r̂ and each training sample (ĥi, r̂, t̂i).
Workflow of Our Method:

1. Extract a fixed hop k sub-graph from the original KB. Each sub-graph starts with an entity ĥ,
ends with an entity t̂, and satisfies (ĥ, r̂, t̂) ∈ G. The sub-graph consists of multiple m-hop

paths connecting the two ends, where 1 ≤ m ≤ k. Each of the m-hop paths has the form

(ĥ, r1, t1), (t1, r2, t2), · · · (tm−1, rm, t̂). We call r1 → r2 · · · → rm a candidate relation chain R.

2. One-hot encoding. For every sample (ĥi, r̂, t̂i). We encode chains between (ĥi, t̂i) with
one-hot encoding as a m ∗ m 0-1 matrix.

3. Rule set generator that selects the set of chains Si as a rule.

4. Predictor that predicts the probability of r̂ based on Si ,denoted as p̂(r̂|Si).
5. Complement predictor that estimates probability of r̂ conditioned on Sc

i , denoted as p̂c(r̂|Sc
i ).

Optimize Predictor and Complement Predictor:

Lp = min
p̂

−H(p(r̂|Si); p̂(r̂|Si)), Lc = min
p̂c

−H(p(r̂|Sc
i ); p̂c(r̂|Sc

i )), (1)

H(p; q) denotes the cross entropy between p and q, and p(·|·) denotes the empirical distribution.

Optimize Generator:
min
g(·)

Lp − Lc + λsLs, (2)

where Lp and Lc are the losses of the predictor and the complement predictor, respectively. Ls is a

sparsity loss which aims to constrain the number of chains to be select to a desired size d:

Ls = max{(|Si| − d)/|Ri|, 0}. (3)

Figure 2:An example workflow of our model. The generator selects the green chains as the "critical information"

for prediction. The predictor Si is encoded as vSi
=[0, 0, 1, 1] and estimates probability of r̂ being true as 100%. The

complement predictor Sc
i is encoded as vSc

i
=[1, 1, 0, 0] and estimates the probablity as 19%.

Results

[t]

Relation
Single-Chain Ours Ours (-conj)

DeepPath MINERVA
Baseline d=2 d=5 d=2 d=5

N
E
L
L-
9
9
5

athletePlaysForTeam 0.872 0.940∗ 0.947∗ 0.900 0.897 0.750 0.824

athletePlaysInLeague 0.962 0.977∗ 0.981∗ 0.957 0.975 0.960 0.970

athleteHomeStadium 0.892 0.896 0.895 0.856 0.854 0.890 0.895

athletePlaysSport 0.916 0.978∗ 0.982∗ 0.932 0.978 0.957 0.985
teamPlaySports 0.728 0.769 0.782 0.669 0.771 0.738 0.846
orgHeadquarterCity 0.957 0.932 0.907 0.962 0.903 0.790 0.946

worksFor 0.794 0.842∗ 0.849∗ 0.811 0.842 0.711 0.825

bornLocation 0.823 0.902∗ 0.850∗ 0.874 0.872 0.757 0.793

personLeadsOrg 0.833 0.832 0.813 0.832 0.822 0.795 0.851
orgHiredPerson 0.833 0.825 0.814 0.837 0.855 0.742 0.851

Average 0.861 0.890 0.882 0.863 0.877 0.809 0.879

F
B
1
5
K
-2
3
7

teamSports 0.740 0.739 0.769∗ 0.758 0.765 0.955 -

birthPlace 0.463 0.505∗ 0.566∗ 0.443 0.512 0.531 -

filmDirector 0.303 0.368 0.411∗ 0.363 0.413 0.441 -

filmWrittenBy 0.498 0.516∗ 0.553∗ 0.507 0.518 0.457 -

filmLanguage 0.632 0.665∗ 0.678∗ 0.667 0.675 0.670 -

tvLanguage 0.975 0.962 0.957 0.957 0.956 0.969 -

capitalOf 0.648 0.795 0.825∗ 0.820 0.786 0.783 -

orgFounded 0.465 0.407 0.490∗ 0.431 0.485 0.309 -

musicianOrigin 0.376 0.408∗ 0.516∗ 0.390 0.476 0.514 -

personNationality 0.713 0.806∗ 0.828∗ 0.703 0.760 0.823 -

Average 0.581 0.617 0.659 0.604 0.635 0.645 -

Overall Results (MAP) on NELL-995 and FB15K-237. ∗ highlights the cases where our MLP model outperforms the

baseline with statistical significance (p-value<0.01 in t-test).

Discussion

Effects of numbers of chains in one rule (d)
On NELL-995: d=2 is better than d=5. On FB15K-237 d=5 is much better. Because tuples in

FB15K-237 contain more chains in average.

We select d=5 as evidence with following reasons:

The average number of chains is 13.8 for NELL-995 and 63.3 for FB15K-237. d=5 chains are
a significant portion of the whole input space.

MAP of our model using all candidate chains is 0.671 for FB15K-237 and 0.892 for

NELL-995, which are close to that of d=5

Effects of MLP versus linear predictors

Linear modelsOurs (-conj) improve a lot over single-chain baseline, which shows that most of the

relations mainly benefit from the case of confidence enhancement.

Conclusion

We formalize the concept of multi-hop rule sets with multiple relation chains from KGs.

We propose a game-theoretical learning approach to efficiently select predictive relation

chains for a query relation.

Our model outperforms state of the art works by up to 11.21%.




