

Abstract

Multi-hop reasoning approaches over knowledge graphs infer a missing relationship between entities with a multi-hop rule, which corresponds to a chain of relationships.

We extend existing works to consider a generalized form of multi-hop rules, where each rule is a set of relation chains. We propose a two-step approach that first selects a small set of relation chains as a rule and then evaluates the confidence of the target relationship by jointly scoring the selected chains.

A game-theoretical framework is proposed to this end to simultaneously optimize the rule selection and prediction steps. Empirical results show that our **multi-chain multi-hop (MCMH)** rules result in superior results compared to the standard single-chain approaches.

Introduction

Our model utilizes deducible paths of tuples to do reasoning. We propose the concept of MCMH rule set, a set of multi-hop rules. Multiple chains leverage the inference in two ways:

- Logic conjunction of multiple chains (Figure 1b);
- Aggregation of multiple pieces of evidence (Figure 1c);

a. athlete at location (Neymar, Paris)

Figure 1:Examples of reasoning with multiple paths. Solid lines are selected paths (different colors indicate different paths), and dotted lines are unselected paths.

EHIGH MCMH: Learning Multi-Chain Multi-Hop Rules for Knowledge Graph Reasoning Lu Zhang 🌯 Mo Yu 🌣 Tian Gao 🌣 Yue Yu 🏶

Lehigh University [©] IBM Research

luz319@lehigh.edu {yum, tgao}@us.ibm.com yuy214@lehigh.edu

A Three-Player Game for Rule Learning

The input is a set of chains $\mathcal{R}_i \subset \mathcal{R}$ for relation \hat{r} and each training sample $(\hat{h}_i, \hat{r}, \hat{t}_i)$. Workflow of Our Method:

- **Extract a fixed hop** k sub-graph from the original KB. Each sub-graph starts with an entity \hat{h} , ends with an entity \hat{t} , and satisfies $(\hat{h}, \hat{r}, \hat{t}) \in \mathcal{G}$. The sub-graph consists of multiple *m*-hop paths connecting the two ends, where $1 \le m \le k$. Each of the *m*-hop paths has the form $(\hat{h}, r^1, t^1), (t^1, r^2, t^2), \cdots, (t^{m-1}, r^m, \hat{t}).$ We call $r^1 \to r^2 \cdots \to r^m$ a candidate relation chain R.
- 2. One-hot encoding. For every sample $(\hat{h}_i, \hat{r}, \hat{t}_i)$. We encode chains between (\hat{h}_i, \hat{t}_i) with one-hot encoding as a m * m 0-1 matrix.
- 3. Rule set generator that selects the set of chains S_i as a rule.
- **Predictor** that predicts the probability of \hat{r} based on \mathcal{S}_i ,denoted as $\hat{p}(\hat{r}|\mathcal{S}_i)$.
- 5. Complement predictor that estimates probability of \hat{r} conditioned on \mathcal{S}_i^c , denoted as $\hat{p}^c(\hat{r}|\mathcal{S}_i^c)$.

Optimize Predictor and Complement Predictor:

 $\mathcal{L}_p = \min -H(p(\hat{r}|\mathcal{S}_i); \hat{p}(\hat{r}|\mathcal{S}_i)), \qquad \mathcal{L}_c = \min -H(p(\hat{r}|\mathcal{S}_i^c); \hat{p}^c(\hat{r}|\mathcal{S}_i^c)),$ (1)

H(p;q) denotes the cross entropy between p and q, and $p(\cdot|\cdot)$ denotes the empirical distribution. **Optimize Generator**:

$$\min_{q(\cdot)} \mathcal{L}_p - \mathcal{L}_c + \lambda_s \mathcal{L}_s,$$

where \mathcal{L}_p and \mathcal{L}_c are the losses of the predictor and the complement predictor, respectively. \mathcal{L}_s is a sparsity loss which aims to constrain the number of chains to be select to a desired size d: (3) $\mathcal{L}_s = \max\{(|\mathcal{S}_i| - d) / |\mathcal{R}_i|, 0\}.$

athlete home stadium (Lindsey Hunter, Palace_of_Auburn Hills)

Figure 2:An example workflow of our model. The generator selects the green chains as the "critical information" for prediction. The predictor S_i is encoded as $\mathbf{v}_{S_i} = [0, 0, 1, 1]$ and estimates probability of \hat{r} being true as 100%. The complement predictor S_i^c is encoded as $\mathbf{v}_{S_i^c} = [1, 1, 0, 0]$ and estimates the probability as 19%.

(2)

		Relation	Single-Chain	Ours		Ours (-conj) $d=2$ $d=5$		DeepPath	MINERVA
			Daseinie	<i>u</i> -2	<i>u</i> - J	<i>u</i> - ∠	<i>a</i> - J		
		athletePlaysForTeam	0.872	0.940*	0.947*	0.900	0.897	0.750	0.824
		athletePlaysInLeague	0.962	0.977*	0.981*	0.957	0.975	0.960	0.970
		athleteHomeStadium	0.892	0.896	0.895	0.856	0.854	0.890	0.895
	€	athletePlaysSport	0.916	0.978*	0.982*	0.932	0.978	0.957	0.985
	6	teamPlaySports	0.728	0.769	0.782	0.669	0.771	0.738	0.846
	Ŀ	orgHeadquarterCity	0.957	0.932	0.907	0.962	0.903	0.790	0.946
	Ξ	worksFor	0.794	0.842*	0.849*	0.811	0.842	0.711	0.825
	Ζ	bornLocation	0.823	0.902*	0.850*	0.874	0.872	0.757	0.793
		personLeadsOrg	0.833	0.832	0.813	0.832	0.822	0.795	0.851
[+]		orgHiredPerson	0.833	0.825	0.814	0.837	0.855	0.742	0.851
[L]		Average	0.861	0.890	0.882	0.863	0.877	0.809	0.879
		teamSports	0.740	0.739	0.769*	0.758	0.765	0.955	-
		birthPlace	0.463	0.505*	0.566*	0.443	0.512	0.531	-
	•	filmDirector	0.303	0.368	0.411*	0.363	0.413	0.441	-
	37	filmWrittenBy	0.498	0.516*	0.553*	0.507	0.518	0.457	-
	FB15K-2	filmLanguage	0.632	0.665*	0.678*	0.667	0.675	0.670	-
		tvLanguage	0.975	0.962	0.957	0.957	0.956	0.969	-
		capitalOf	0.648	0.795	0.825*	0.820	0.786	0.783	-
		orgFounded	0.465	0.407	0.490*	0.431	0.485	0.309	-
		musicianOrigin	0.376	0.408*	0.516*	0.390	0.476	0.514	-
		personNationality	0.713	0.806*	0.828*	0.703	0.760	0.823	-
		Average	0.581	0.617	0.659	0.604	0.635	0.645	-

Overall Results (MAP) on NELL-995 and FB15K-237. * highlights the cases where our MLP model outperforms the baseline with statistical significance (p-value<0.01 in t-test).

Effects of numbers of chains in one rule (d)

On NELL-995: d=2 is better than d=5. On FB15K-237 d=5 is much better. Because tuples in FB15K-237 contain more chains in average.

We select d=5 as evidence with following reasons:

- a significant portion of the whole input space.
- NELL-995, which are close to that of d=5

Effects of MLP versus linear predictors Linear models **Ours (-conj)** improve a lot over single-chain baseline, which shows that most of the relations mainly benefit from the case of confidence enhancement.

- chains for a query relation.
- Our model outperforms state of the art works by up to 11.21%.

Results

Discussion

• The average number of chains is 13.8 for NELL-995 and 63.3 for FB15K-237. d=5 chains are

• MAP of our model using all candidate chains is 0.671 for FB15K-237 and 0.892 for

Conclusion

• We formalize the concept of multi-hop rule sets with multiple relation chains from KGs. • We propose a game-theoretical learning approach to efficiently select predictive relation