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INTRODUCTION

Commonsense knowledge bases (KBs): Store declarative statements of implicit

NegatER: PROPOSED FRAMEWORK

We want negatives "on the boundary" of positive knowledge [Minsky 1997] —

. . . . <nowledge that looks plausible and is "almost correct”, but would be misleading or
human knowledge (e.g., pre-conditions, causes, properties) in relational triple form

narmful it considered as true (i.e., nontrivial negatives)

STEP 1: CORRUPT POSITIVES

Given a positive triple:

» Ever-expanding KBs serve as relational inductive biases [Battaglia et al 2018]

« KB completion: Automatically augment KBs with novel statements

Input: (horse, IsA, expensive pet)

 Positive and negative knowledge needed for KB completion

1. Generate corruptions 2. Estimate “contradiction”
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- (horse, IsA, expensive habit)

STEP 2: FIND CONTRADICTIONS

Rank corruptions by the amount needed to update fine-tuned BERT's parameters

neighbors in turn
3. Discard in-KB triples

* We propose NegatER, a negative knowledge generation framework

* We demonstrate the intrinsic value and extrinsic utility of negative knowledge

4. Repeat for tail phrase

PRELIMINARY EXPERIMENTS

TERMINOLOGY
 Commonsense statements are KB triples: (head phrase, relation, tail phrase) \/

given a positive labeling (i.e., the magnitude of the gradient of the loss)

 For efficiency, learn a proxy function to

Magnitude of grad. of £(Z) Predicted grad. magnitude
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MODELS

« 7 self-supervised and unsupervised baselines

bicycle

EVALUATION

* We propose a fine-tuned BERT model with a triple scoring layer [Devlin et al 2019]
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