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INTRODUCTION

PRELIMINARY EXPERIMENTS

NegatER: PROPOSED FRAMEWORK

CONTRIBUTIONS
• We show the difficulty of obtaining meaningful negatives in KBs

• We propose NegatER, a negative knowledge generation framework

• We demonstrate the intrinsic value and extrinsic utility of negative knowledge

STEP 1: CORRUPT POSITIVES
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin et al, NAACL 2019
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EVALUATION

Commonsense knowledge bases (KBs): Store declarative statements of implicit 

human knowledge (e.g., pre-conditions, causes, properties) in relational triple form

• Ever-expanding KBs serve as relational inductive biases [Battaglia et al 2018]

• KB completion: Automatically augment KBs with novel statements

• Positive and negative knowledge needed for KB completion

• Negative knowledge: False or non-viable statements (different from negation)

TERMINOLOGY
• Commonsense statements are KB triples: (head phrase, relation, tail phrase)

EXPERIMENTAL SETUP
• Classify novel triples as {True, False}

• ConceptNet dataset [Speer and Havasi 2012]

• Randomly corrupted negatives [Li et al 2016]

MODELS
• 7 self-supervised and unsupervised baselines 

• We propose a fine-tuned BERT model with a triple scoring layer [Devlin et al 2019]

RESULTS
• BERT beats all published results…

• …because the task is too easy for BERT

~50% of test positives are paraphrases of train 

and ~40% of negatives are ungrammatical; 

paraphrases are easy to delete, but good 

negatives aren't easy to construct

STEP 2: FIND CONTRADICTIONS

We want negatives "on the boundary" of positive knowledge [Minsky 1997] –

knowledge that looks plausible and is "almost correct", but would be misleading or 

harmful if considered as true (i.e., nontrivial negatives)

?

Given a positive triple:

1. Retrieve top-k semantically similar phrases to 

head phrase (we use pretrained BERT here)

2. Replace head phrase with k-nearest 

neighbors in turn

3. Discard in-KB triples

4. Repeat for tail phrase

Rank corruptions by the amount needed to update fine-tuned BERT's parameters 

given a positive labeling (i.e., the magnitude of the gradient of the loss)

~94.5% of our negatives grammatical 

and ~86% true negatives, compared to 

60% grammatical and 90% true 

negatives for random corruptions

EXAMPLE GENERATED NEGATIVES

Hard negatives significantly reduce 

performance of all models (-21.77 points 

avg), compared to human (-9 points)

Proxy approach learns good 

model trained on relatively few 

corruptions (c hyperparameter)

• For efficiency, learn a proxy function to 

predict gradient magnitudes so that 

backpropagation can be skipped!

• Train on triple embeddings + gradient 

magnitudes for a sample of corruptions

EASY NEGATIVES HARD NEGATIVES
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