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Abstract

We investigate how to learn novel concepts in Knowledge Graphs (KGs) in a
principled way, and how to effectively exploit them to produce more accurate
neural link prediction models. Specifically, we show how concept membership
relationships learned via unsupervised clustering of entities can be reified and
effectively used to augment a KG. In our experiments we show that neural link
predictors trained on these augmented KGs, or in a joint Expectation-Maximization
iterative scheme, can generalize better and produce more accurate predictions for
infrequent relationships while delivering meaningful concept representations.

1 Introduction

One of the most remarkable aspects of human intelligence is arguably the capacity to abstract and
summarize knowledge into concepts, which is believed to play a central role in the ability to quickly
learn from few examples [21] and to robustly generalize to unseen data [30, 23, 32]. It is no wonder
that many machine learning and knowledge representation methods have tried to “reverse-engineer”
how humans learn concepts [22, 14] in order to automate reasoning as well as Knowledge Base (KB)
construction [18, 17, 38].

Among the most prominent knowledge representation formalisms, there are Knowledge Graphs (KGs)
– graph-structured KBs where knowledge about the world is encoded in the form of relationships
between entities. Reasoning and learning routines for KGs build upon the link prediction task, which
consists in identifying missing links between entities in the KG. Current state-of-the-art link prediction
models are neural link predictors – also referred to as Knowledge Graph Embedding (KGE) models –
that learn an embedding representation for each entity in the KG via back-propagation [28]. However,
neural link predictors were shown not to be very accurate in the presence of sparse observations [31],
and may not be able to learn patterns involving sets of entities [12].

In this work, we propose to learn concepts in neural link predictors as a principled way to elicit
discrete latent information that can alleviate the generalization issues of existing models, while
providing meaningful representations for downstream tasks. Specifically, we make the following
contributions. Firstly, we formalize concept learning as an unsupervised clustering step over entities
in a KG, noting that by reifying concept membership relationships into KG facts and by incorporating
them in the KG, we can produce more accurate neural link prediction models (see Section 2).
Secondly, we introduce a single, principled probabilistic framework for to jointly learning concept
memberships and neural link prediction models at once, by maximizing the likelihood of the KG
triples via an Expectation-Maximization scheme (see Section 3). Lastly, we execute a rigorous
empirical evaluation on several real-world KG benchmarks, including a new dataset in the biomedical
domain, showing that performing concept learning on KGs can be an effective way to improve the
statistical accuracy of neural link predictors.
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Algorithm 1 CONFORMA(G, Nc n)
1: Input: A KG G, number of clusters Nc and number of epochs n
2: Output: parameters ⇥ and cluster assignments S = {S1, . . . , SNc}

3: P propositionalization(G) . E.g., by random path generation (cf. Appendix A)
4: S  Clustering(P, Nc) . E.g., spectral clustering
5: G

0
 G [ {hei, ISA, cji | ei 2 Sj , Sj 2 S} . KG augmentation

6: ⇥ init()
7: for n epochs do

8: ⇥ train(G0,⇥) . Update the parameters ⇥ of a KGE model on G
0

return ⇥,S

2 CONFORMA: Learning Concepts by Augmenting Knowledge Graphs

Let a KG G be represented as a set of N triples, i.e., G = {hs, r, oii}Ni=1 ✓ E ⇥ R ⇥ E where
E = {ei}

Ne
i=1 is the set of subject (s) and object (o) entities, and R = {ri}

Nr
i=1 the set of relation

types (r). Neural link predictors can be framed as learning a k-dimensional representation, i.e., an
embedding vector e 2 Ck, for all entities in E appearing in G. Given a triple hs, r, oi 2 E ⇥R⇥ E ,
a neural link predictor defines a scoring function �r : Ck

⇥ Ck
7! R that, given the embedding

representations es 2 Ck and eo 2 Ck of the subject and the object of the triple, returns the likelihood
that s and o are related by the relation type r: �r(es, eo) 2 R. This scoring function implicitly
defines a probability distribution over triples, i.e., log p(hs, r, oi) / �r(es, eo). Model parameters
can be learned from the data by maximizing the likelihood of triples in the G.

Given a KG G, concept learning equals to identify sets of entities S1, . . . , SNc ✓ E that are semanti-
cally related and can be abstracted into concepts c1, . . . , cNc , here representing some novel entities.
We want to find a partitioning S = {Si}

Nc
i=1 of E , i.e.,

S
S2S S = E and 8Si, Sj 2 S ! Si \Sj = ;.

To this end, we first cluster the entities in G, and then reify cluster membership relations, i.e., ma-
terialize them as triples to augment the KG G. Algorithm 1 summarizes our framework which can
be instantiated for different clustering and neural link prediction models. We name it CONFORMA,
Concept Formation via Augmentation. Next, we discuss how to perform these two phases, and why
neural link prediction models can benefit from being trained on augmented KGs.

Clustering entities. Ideally, clustering in CONFORMA could by performed by any relational cluster-
ing algorithm. However, classical probabilistic approaches such as statistical predicate invention [18]
and stochastic block models [17, 38] would hardly scale to modern KGs with hundreds of thousands
of entities. This poses a challenge also to kernel-based [1, 6, 26] approaches. To overcome this
issue, we opt for a more computationally efficient alternative: we first propositionalise entities into
d-dimensional embedding vectors [19] and then employ a propositional clustering algorithm – e.g.,
spectral clustering [27] – over this now tabular representation P 2 RNe⇥d. We find that generating
sparse binary representations by describing entities in terms of the (co-)domains of the relations they
participate in, or by executing multi-hop random paths in G, as proposed by [4], provides scalable
and accurate representations. 1 Details about the two strategies can be found in Appendix A.

Knowledge Graph Augmentation. Given the set S, we reify the cluster membership relations by
materializing new triples to augment G. Specifically, for each entity ei participating in a cluster
Sj 2 S we create a new triple of the form hei, ISA, cji, where cj is a new entity denoting the
j-th concept that will be shared among all entities in Sj , and ISA is a freshly introduced relation
denoting concept memberships. Let G0 denote the KG augmented in this way, learning a neural
link prediction model over it (lines 6-8 of Algorithm 1) would require updating an additional set of
parameters ⇥, comprising now the concept embeddings C 2 CNc⇥k for the newly introduced concept
entities C = {c1, . . . , cNc}. Moreover, it will yield the following advantages. Firstly, this kind of
augmentation acts as injecting background knowledge that does not need to be learned from scratch,
akin to when inverse relation triples [20, 16] or hierarchical relation information [41] are explicitly
added to KGs. Secondly, they help to make very sparse KGs more dense, tackling the sparsity issues
in neural link predictors [31]. Lastly, learning new concepts as entities helps to automate construction
of KGs, and their learned embeddings can be exploited in additional downstream tasks.

1We explored clustering directly over the embeddings learned by a neural link prediction model like ComplEx
or DistMult, but with scarce success. We describe and discuss this experiment in Appendix D.
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Algorithm 2 CONFORMAE(⇥,S, Nc, n, t)
1: Input: number of clusters Nc, initial parameters ⇥, cluster assignments S, and number of

epochs n and t.
2: Output: updated parameters ⇥ and cluster assignments S
3: for t iterations do

4: S  emptyAssignments()
5: for e 2 E do . E-step: Make hard assignments
6: ĉ argmaxc2C �ISA(ee, ec)
7: Sĉ  Sĉ [ {ei}

8: G
0
 G [ {hei, ISA, cji | ei 2 Sj , Sj 2 S} . Augment the KG

9: for n epochs do

10: ⇥ train(G0,⇥) . M-step: refine the neural link prediction model
return ⇥,S

3 CONFORMAE: Joint learning of Concepts and Embeddings via EM

CONFORMA is quite flexible: it can be customized with any propositionalization and clustering
routines and wrapped around any neural link prediction model. A natural question then arises:
is it possible to automatically devise a propositionalization scheme that enhances clustering and
embedding quality, that is, to learn both the concepts and the embeddings jointly, in a single loop?
Ideally, we could cast this as a joint optimization problem to maximise the marginal log-likelihood of
the triples in G, where marginalization is performed over some latent variable Z denoting the cluster
assignments, i.e., having values z 2 C. As directly maximising this marginal likelihood is intractable,
we adopt an iterative expectation-maximisation (EM)-like scheme [7]. Algorithm 2 summarizes the
whole process, which we name CONFORMAE – Concept Formation with Augmentation via EM. We
next discuss in detail how to design the E and M steps efficiently2.

E step. Exactly computing all the cluster memberships p(Z = cj |ei) for entity ei and concept cj 2 C

is a hard problem, since we would need to compute an intractable partition function. We therefore
resort to compute hard cluster assignments, a practical approximation commonly adopted in many
hard-EM variants [34, 18], i.e., ĉ = argmaxc2C log p(Z = c | ei) for each entity ei. Note that
this can be done exactly and efficiently as ĉ = argmaxc2C �ISA(ee, ec) since in our augmentation
scheme it holds that log p(Z = c|e) / �ISA(ee, ec).

M step. The aim of the step is to find the best set of parameters ⇥ for a neural link prediction model
by maximizing the expected log-likelihood Ez⇠p(Z=k|E) [log p(X,Z)], where the observed variables
X denote the original triples in G. Again, computing this exactly is hard in our scenario. Nevertheless,
it can be efficiently approximated via our reification and augmentation scheme. In fact, at the end of
the E step, we had retrieved the clustering S (as in CONFORMA). Therefore, to find ⇥ we can simply
train the neural link prediction model for a certain number of epochs n over the augmented KG G

0.3

4 Experiments

We aim to answer the following research questions: Q1) can unsupervised concept learning boost
neural link prediction performance?, Q2) are the learned concepts semantically-meaningful? and Q3)
how does the augmentation impact generalization over rare entities and relation types? To this end,
we consider two neural link prediction models as baselines: ComplEx [37] and DistMult [39], and
experiment on four datasets: WN18RR [9] and FB15K-237 [36] – two large benchmark KGs and
UMLS [25] and Hetionet [15] – a small and a large biomedical KG. We report here results for the
first two and refer the reader to Appendix C for complete results and implementation details.

Tables 1 and 3 report the mean reciprocal ranks and hits for CONFORMA and CONFORMAE for
different values of embedding size k, after a grid search on regularizers, batch-size and learning rates
for the baselines and varying the number of clusters (see Appendix C). In all settings, both algorithms
generally improve over the DistMult and ComplEx baselines. The boost is striking on WN18RR:

2We found that providing a random initialization to cluster memberships works best in practice. Convergence
can be established by monitoring the KGE loss on a held-out set or the number of iterations t can be fixed.

3We found in our experiments that setting n = 1 is sufficient for fast convergence.
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Table 1: Mean reciprocal rank (MRR) and Hits (H) at 1,3,10 for CONFORMA and CONFORMAE
when using DistMult or ComplEx as baseline KGE models on WN18RR and FB15K-237 KGs for
different values of embedding sizes (k). Best values for each metric and k in bold.

DISTMULT COMPLEX

k MODEL MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

W
N

18
R

R

500
BASELINE 44.40 40.30 45.63 52.81 47.85 43.41 49.44 56.57

CONFORMA 44.19 39.96 45.33 52.94 48.55 43.94 50.24 57.67

CONFORMAE 44.89 40.84 46.00 53.38 48.77 44.42 50.48 57.29

1000
BASELINE 44.80 41.02 45.80 52.52 48.34 43.81 50.18 56.99

CONFORMA 45.47 41.16 46.76 54.28 49.12 44.42 50.83 58.70

CONFORMAE 45.20 40.97 46.41 54.05 49.25 44.81 50.81 58.33

2000
BASELINE 45.20 41.05 46.39 53.75 48.62 44.07 50.34 57.28

CONFORMA 44.93 40.60 45.98 53.67 49.40 44.80 50.86 59.00

CONFORMAE 45.38 41.16 46.39 54.04 49.42 45.20 50.41 58.42

FB
15

K
23

7

500
BASELINE 34.88 25.56 38.34 53.52 35.89 26.47 39.31 54.82

CONFORMA 34.92 25.65 38.39 53.54 36.08 26.77 39.39 55.00
CONFORMAE 35.01 25.72 38.40 53.65 36.13 26.76 39.46 55.09

1000
BASELINE 35.26 25.83 38.82 54.26 36.18 26.69 39.81 55.21

CONFORMA 35.30 25.91 38.78 54.28 36.26 26.88 39.74 55.22
CONFORMAE 35.40 26.11 38.77 54.28 36.27 26.84 39.81 55.34

2000
BASELINE 35.47 26.13 38.76 54.42 36.37 27.01 39.89 55.45

CONFORMA 35.55 26.18 39.03 54.32 36.37 26.99 39.89 55.19
CONFORMAE 35.62 26.31 39.02 54.43 36.34 26.96 39.81 55.36

Figure 1: Relative improvement in terms of MRR of CONFORMA and CONFORMAE over the
ComplEx baseline for WN18RR with k = 100.

a smaller (k = 500) model learned by CONFORMAE is equally good or better than a much larger
one (k = 2000) learned by ComplEx. We can then answer question Q1 affirmatively. We answer Q2

affirmatively by inspecting the entities which form the concepts learned by CONFORMAE on UMLS,
which is small enough to allow for easy qualitative analysis. As shown in Appendix F, entities
appear to be meaningfully clustered into e.g., biological, chemical and anatomical groups. Lastly,
to answer Q3 we inspect how generalization affects different triples after binning them w.r.t. the
frequency (rare, medium, common) of their subjects, objects or relations. Figures 1 and 3 report the
relative improvement of CONFORMA and CONFORMAE in terms of MRR w.r.t. the baseline for the
aforementioned bins. We can see a clear boost for both algorithms on WN18RR for the rare relation
types sub-population, and for CONFORMAE alone on FB15K-237. This indicates that discovering
concepts and augmenting KGs with them helps neural link predictors deal with sparse KGs.

5 Conclusions

In this work we have introduced the task of unsupervised concept formation in KGs and proposed
two algorithms to achieve it – CONFORMA and CONFORMAE – which perform entity clustering
and KG augmentation to improve neural link predictor performances. They also pave the way for
principled probabilistic ways to elicit discrete latent variables in neural link prediction models – an
interesting research venue which we are currently exploring.
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A Propositionalization schemes for CONFORMA

A.1 In-range, In-domain Representation

Combining latent and graph-based approaches is a promising area of research [28], which has shown
to increase predictive power. Learning concepts from representations built using rule-based reasoning
and training a latent feature model on the augmented dataset – as we do using CONFORMA – can be
seen as a novel way of marrying these two complimentary approaches.

ILP approaches hinge upon defining a set of first-order clauses, which in turn induce a disjuctive
hypothesis. To begin with, we induce two very simple clauses, in_range and in_domain, which
test whether a given entity participates in a triple with relation r as either object or subject. Formally:

in_range(e, r) =
⇢

True if 9 (e, r, o) 2 G, for any o
False otherwise (1)

in_domain(e, r) =
⇢

True if 9 (s, r, e) 2 G, for any s
False otherwise (2)

For a given entity e and some relation r, we construct a vector p̂ 2 B2 such that:

(in_range(e, r)! p̂1 = 1) ^ (¬in_range(e, r)! p̂1 = 0)

(in_domain(e, r)! p̂2 = 1) ^ (¬in_domain(e, r)! p̂2 = 0)
(3)

Each entity e is then represented by a vector p created by concatenating p̂ vectors which test the
participation of e for every relation r 2 R. Hence, p 2 B2Nr where Nr = |R| is the number of
relations in the graph.

A.2 Random Paths Representation

The random paths representation used in this work is based on the algorithm proposed by [4]. First,
for each entity, e, we generate n random paths starting at e of maximum length L, where a path is
defined as a list of triples of the form (ei, rj , ek, direction). Direction specifies whether the we travel
along the relation in forward or inverse direction. The paths are generated such that we avoid an
immediate reversal step, i.e. steps of the type (e1, r, e2), (e2, r�1, e1). We also check whether loops
have occurred, where we define loops as having traveled along a segment (e1, r1, e2, r2, e3, r3, e4)
more than once in a single path. If the path is of length greater than six and we have encountered a
loop, the path is terminated. A simplified algorithm for obtaining paths is shown in Algorithm 3.

To construct the vector embeddings, we represent each entity e 2 E using p where each entry pi is
given by the number of times we have traveled along relation ri across the n paths. We distinguish as
to whether we have traveled along a relation in the forward or inverse direction, hence the resulting
embeddings are p 2 R2Nr .

B Complexity of CONFORMA and CONFORMAE

The worst-case time and space complexity of CONFORMA depend on the propositionalization,
clustering and neural link prediction model, and would equal the complexity of the slowest step
of the three. For our experiments, the propositionalization techniques involved have the following
complexities. Range-based propositionalization takes O (|G|) in time since with one pass over the
KG triples we can build the propositional embeddings P which will require exactly ⇥(2NeNr) space.
For the random-path propositionalization instead, the time complexity is O(kL), where L is the max
length of a path and k is the number of paths and its space complexity ⇥(kNe).

Concerning the clustering step, for a vanilla spectral clustering implementation the complexity would
be dominated by the O(N3

e ) cost of computing the SVD matrix of P. Alternatively, a simpler
K-Means would take O(tkNeNc) time, where t is the number of iterations and k the embedding size.

For the cost of training and evaluating neural link prediction models, under certain losses, we refer
the reader to their respective papers [2, 37, 39, 8, 20]. We refer to [33] for a comparison of different
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Algorithm 3 Generate Random Paths
1: function GENERATERANDOMPATHS(G)
2: for e 2 E do

3: for i 2 {1, . . . , n} do

4: for j 2 {1, . . . , L} do

5: outgoingEdges GetEdges(e)
6: if previousEdge is not None then

7: outgoingEdges.Remove(Inverse(previousEdge))
8: newEdge RandomChoice(outgoingEdges)
9: paths.Append(newEdge)

10: previousEdge newEdge
11: if Length(path > 6) and DetectLoops(path) then

12: Break

13: function DETECTLOOPS(path)
14: return True if loops in path, else False

15: function INVERSE(edge : (e1, r, e2, direction))
16: return (e1, r, e2,�direction)

17: function GETEDGES(e)
18: return a set of all outgoing edges from entity e, {(e, ri, ej , direction)}, where direction 2

{�1, 1} specifies whether the relation r is forward or reciprocal.

choices of the loss function on several downstream link prediction tasks. We point out that in our
case, the number of entities in G becomes Ne+Nc, as the new set of entities in the augmented KG G

0

would include Nc concept entities. For instance, inference in ComplEx for all entities and relations
would take O (Ne +Nck +Nrk) time.

Concerning CONFORMAE, the space complexity of its M-step is simply the complexity of the score
function in a neural link prediction model training procedure, as discussed above. In the E-step, on
the other hand, we need to evaluate the score and loop through all of the entities and all the concepts,
which results in O (NeNc) iterations. Note that, in practice, this step can be easily and efficiently
parallelized on a GPU.

C Implementation Details

Here, we describe the experimental setup required to replicate the results in Table 3. The parameter
ranges and propositionalization choices were guided by the preliminary results described in section
D.

C.1 Baselines

To obtain the baselines, we ran the same grid search for all of the datasets on both, ComplEx [37]
and DistMult [39], with the ranks set to [50, 100, 500] for UMLS, [500, 1000, 2000, 4000] for
WN18RR and FB15K-237 and [100, 200] for Hetionet. The grid consisted of three batch-sizes
in [50, 100, 500], three learning rates: {10�1, 10�2, 10�3

} and six regularization strengths in
{10�3, 5⇥10�3, . . . , 10�1, 5⇥10�1

}. We considered two regularisers – the Frobenius norm [40, 37]
and the nuclear N3 norm [20] – and consistently found the N3 superior, as suggested in [20]. For
UMLS, WN18RR and FB15K-237 we used the provided train/validation/test splits, while for Hetionet,
which is a relatively new biomedical dataset and does not have an established split, we held out 50k
triples for validation and a further 50k for testing. We trained each model till convergence for 100
epochs and every 3 epochs computed the filtered Mean Reciprocal Rank (MRR) and HITS@K [3] on
the validation and test sets. The highest validation performance was extracted and the corresponding
test performance was reported. For all experiments we used the standard multi-class loss proposed by
[20], and the AdaGrad optimizer [10].
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Table 2: Bins for categorizing entities and relations into sub-populations based on their frequency, N ,
in the training set.

WN18RR FB15K-237
Sub-population Entities Predicates Entities Predicates

Rare N  3 N < 103 N  20 N < 102

Medium 3 < N  15 103 < N  104 20 < N  100 102 < N  103

Common N > 15 N > 104 N > 100 N > 103

C.2 CONFORMA

The CONFORMA results reported in Table 3 were obtained by generating and clustering a random
paths representation (see section A.2). To generate the representations we used the values suggested in
literature [29] to guide our choice of parameters range, using a minimum path length of 2, maximum
path length in [3, 5, 10, 20, 30] and two number of paths parameters: 32 and 64. This set of
ranges resulted in a large number of parameter combinations. We randomly sampled six parameter
combinations for UMLS, WN18RR and FB15K-237 and limited the number to three for Hetionet.
We clustered the representations using the Spectral Clustering algorithm [27] , using the default
parameters, and the number of clusters was in [50, 100, 500, 1000] for WN18RR, FB15K-237 and
Hetionet, while for UMLS the range was reduced to [30, 50, 100]. For training the KGE model
we used the corresponding baseline hyperparameters for the given embedding size. As before, we
extracted the highest validation performance and reported the corresponding performance on the test
set.

C.3 CONFORMAE

To obtain the CONFORMAE results quoted in Table 3 we randomly initialized the cluster assignments,
with the initial number of clusters in [50, 100, 500, 1000] and performed the E-step after every epoch.
As above, we used the same KGE hyperparameters as used for the baseline.

C.4 Entity and Relation Sub-populations

The bins used to categorize entities and relations into their frequency-based sub-populations, shown
in Table 2, were constructed by considering the total number of training examples and exploring the
entity and predicate distributions in each dataset.

D Clustering KGE with CONFORMA

The implementations described in section C.2 were motivated by a series of preliminary experiments.
We initially considered four different clustering algorithms: K-Means [24], Spectral Clustering [27],
Affinity Propagation [13], and DBSCAN [11]. All of the implementations were done using the
sklearn library4 and the default parameters were used. It quickly became apparent that Affinity
Propagation was significantly slower than the other three algorithms while producing clusters of
similar quality. Moreover, despite DBSCAN being able to produce good quality clusters when
carefully fine-tuned, we found that its sensitivity to parameter choice is ill-suited to experimenting
with CONFORMA, where we are often considering multiple propositionalization schemes. Hence,
we focused primarily on Spectral Clustering and K-Means.

We began by considering four different propositionalization approaches for the CONFORMA frame-
work: the KGE embeddings, e.g., ComplEx, the fast approximation of the Weisfeiler-Lehman (WL)
graph kernel [5, 35], the In-range, In-domain representation (A.1) and random paths representation
(A.2). Obtaining the WL kernel representation proved intractable due to the large number of entities
in benchmark datasets, such as WN18RR, which in turn resulted in huge kernel matrices. Hence, we
focused on the other three approaches. The KGE representation was obtained by simply extracting
the baseline KGE embeddings corresponding to the highest validation MRR. The In-range, In-domain

4https://scikit-learn.org/stable/modules/clustering.html
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Figure 2: Different propositionalization schemes for CONFORMA on WN18RR at rank 100 using
ComplEx. All results were obtained using the same hyperparameters as the baseline model. For the
random paths representation Spectral Clustering was used.

representation is deterministic and does not require specifying any parameters, while the random
paths representations were obtained as described in section C.2.

Performance of the different propositionalization approaches on WN18RR with k = 100 is shown
in Figure 2, where we also explored a range of values for the number of clusters parameter and
explored using both, Spectral Clustering and K-Means, for the ComplEx and ILP representations
while limiting random paths experiments to Spectral Clustering. To obtain the baseline, we performed
an initial gridsearch as described in section C.1, but with batch-sizes limited to 500. The standard
deviation was attained by training the baseline model five times using different seeds.

Firstly, we found that introducing concept assignment relationships learned from KGE representations
lead to little, if any, improvement upon the baseline. One hypothesis as to why this might be the
case lies in that the concepts learned in this way are not introducing any new information and
only reinforcing the latent structure that can already be learned by an out-of-the-box KGE. While
ILP showed some promise for low numbers of clusters, CONFORMA trained on any random paths
representation outperformed the out-of-the-box KGE even for large numbers of clusters. This suggests
that using propositionalization approaches such as ILP and random paths might introduce information
that KGE models struggle to capture otherwise. With respect to the number of clusters learned, for
both ILP and random paths representations there appears to be a preference for a smaller number of
clusters. Lastly, we also note that there seems to be no clear advantage of using either K-Means or
Spectral Clustering.

11



Table 3: Mean Reciprocal Rank (MRR) and Hits (H) at 1, 3, 10 for CONFORMA and CONFORMAE
when using DistMult or ComplEx as baseline models on WN18RR and FB15K-237 KGs for different
values of embedding sizes (k). Best values for each metric and k are in bold.

DISTMULT COMPLEX

k MODEL MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

U
M

L
S

50
BASELINE 75.51 66.87 80.41 91.91 94.71 90.77 98.71 99.62

CONFORMA 77.23 69.74 81.39 91.45 95.46 92.44 98.18 99.62
CONFORMAE 76.53 68.68 81.32 92.13 95.39 92.13 98.41 99.77

100
BASELINE 76.19 68.08 80.48 91.38 96.00 93.42 98.49 99.70

CONFORMA 77.08 69.74 80.94 91.45 96.30 93.42 99.17 99.85

CONFORMAE 77.42 70.27 81.01 91.45 94.65 90.70 98.41 99.55

500
BASELINE 76.75 69.29 80.56 91.68 96.97 94.93 99.02 99.77

CONFORMA 77.01 69.97 80.58 91.78 97.47 95.84 99.17 99.78

CONFORMAE 76.45 69.14 80.41 91.07 97.04 95.08 98.94 99.70

W
N

18
R

R

500
BASELINE 44.40 40.30 45.63 52.81 47.85 43.41 49.44 56.57

CONFORMA 44.19 39.96 45.33 52.94 48.55 43.94 50.24 57.67

CONFORMAE 44.89 40.84 46.00 53.38 48.77 44.42 50.48 57.29

1000
BASELINE 44.80 41.02 45.80 52.52 48.34 43.81 50.18 56.99

CONFORMA 45.47 41.16 46.76 54.28 49.12 44.42 50.83 58.70

CONFORMAE 45.20 40.97 46.41 54.05 49.25 44.81 50.81 58.33

2000
BASELINE 45.20 41.05 46.39 53.75 48.62 44.07 50.34 57.28

CONFORMA 44.93 40.60 45.98 53.67 49.40 44.80 50.86 59.00

CONFORMAE 45.38 41.16 46.39 54.04 49.42 45.20 50.41 58.42

4000
BASELINE 45.68 41.35 47.19 54.18 48.78 44.34 50.27 57.43

CONFORMA 45.56 41.18 46.75 54.56 49.36 44.77 50.96 58.38
CONFORMAE 45.66 41.35 46.76 54.64 49.42 44.91 50.83 58.73

FB
15

K
23

7

500
BASELINE 34.88 25.56 38.34 53.52 35.89 26.47 39.31 54.82

CONFORMA 34.92 25.65 38.39 53.54 36.08 26.77 39.39 55.00
CONFORMAE 35.01 25.72 38.40 53.65 36.13 26.76 39.46 55.09

1000
BASELINE 35.26 25.83 38.82 54.26 36.18 26.69 39.81 55.21

CONFORMA 35.30 25.91 38.78 54.28 36.26 26.88 39.74 55.22
CONFORMAE 35.40 26.11 38.77 54.28 36.27 26.84 39.81 55.34

2000
BASELINE 35.47 26.13 38.76 54.42 36.37 27.01 39.89 55.45

CONFORMA 35.55 26.18 39.03 54.32 36.37 26.99 39.89 55.19
CONFORMAE 35.62 26.31 39.02 54.43 36.34 26.96 39.81 55.36

4000
BASELINE 35.68 26.21 39.33 54.54 36.21 26.81 39.67 55.30

CONFORMA 35.83 26.42 39.42 54.76 36.46 27.04 39.98 55.50

CONFORMAE 35.81 26.47 39.16 54.61 36.48 27.05 40.11 55.47

E Complete results for link prediction
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Table 4: Mean reciprocal rank (MRR) and Hits (H) at 1, 3, 10 for CONFORMA and CONFORMAE
when using ComplEx as baseline models on Hetionet KG for two different values of embedding sizes
(k). Best values for each metric and k are in bold.

COMPLEX

k MODEL MRR H@1 H@3 H@10

H
E

T
IO

N
E

T 100
BASELINE 29.60 22.05 32.37 44.46

CONFORMA 29.74 22.16 32.56 44.40
CONFORMAE 29.84 22.24 32.66 44.65

200
BASELINE 32.83 25.45 35.60 47.25

CONFORMA 32.96 25.39 35.98 47.53
CONFORMAE 33.02 25.52 35.95 47.66

Figure 3: Relative improvement in terms of MRR of CONFORMA and CONFORMAE over the
ComplEx baseline for FB15K-237 with k = 100.

Figure 4: Relative improvement in terms of MRR of CONFORMA and CONFORMAE over the
ComplEx baseline for relations in WN18RR with k = 100.
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F Interpreting Concepts learned by CONFORMAE

Table 5: Example of concepts learned by CONFORMAE on UMLS, initialized using 50 random
cluster assignments.

Concept 1 Concept 7 Concept 9

cell_or_molecular_dysfunction activity biologic_function
disease_or_syndrome behavior cell_function
experimental_model_of_disease daily_or_recreational_activity genetic_function
injury_or_poisoning diagnostic_procedure mental_process
mental_or_behavioral_dysfunction educational_activity molecular_function
neoplastic_process governmental_or_regulatory_activity natural_phenomenon_or_process
pathologic_function health_care_activity organ_or_tissue_function
Concept 2 health_care_related_organization organism_function
alga individual_behavior physiologic_function
amphibian laboratory_procedure Concept 10

animal machine_activity amino_acid_sequence
archaeon molecular_biology_research_technique body_location_or_region
bacterium occupational_activity body_system
bird organization carbohydrate_sequence
fish professional_society classification
fungus research_activity clinical_drug
human self_help_or_relief_organization conceptual_entity
invertebrate social_behavior drug_delivery_device
mammal therapeutic_or_preventive_procedure entity
organism Concept 8 finding
plant amino_acid_peptide_or_protein functional_concept
reptile antibiotic geographic_area
rickettsia_or_chlamydia biologically_active_substance group_attribute
vertebrate biomedical_or_dental_material idea_or_concept
virus body_substance intellectual_product
Concept 3 carbohydrate laboratory_or_test_result
environmental_effect_of_humans chemical language
event chemical_viewed_functionally manufactured_object
human_caused_phenomenon_or_process chemical_viewed_structurally medical_device
phenomenon_or_process eicosanoid molecular_sequence
qualitative_concept element_ion_or_isotope nucleotide_sequence
quantitative_concept enzyme regulation_or_law
temporal_concept food research_device
Concept 4 hazardous_or_poisonous_substance sign_or_symptom
acquired_abnormality hormone spatial_concept
age_group immunologic_factor Concept 11

anatomical_abnormality indicator_reagent_or_diagnostic_aid biomedical_occupation_or_discipline
congenital_abnormality inorganic_chemical occupation_or_discipline
family_group lipid Concept 12

group neuroreactive_substance_or_biogenic_amine anatomical_structure
patient_or_disabled_group nucleic_acid_nucleoside_or_nucleotide body_part_organ_or_organ_component
population_group organic_chemical body_space_or_junction
professional_or_occupational_group organophosphorus_compound cell
Concept 5 pharmacologic_substance cell_component
clinical_attribute receptor embryonic_structure
organism_attribute steroid fully_formed_anatomical_structure
Concept 6 substance gene_or_genome
physical_object vitamin tissue
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