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INTRODUCTION NEW CONTRIBUTIONS USE CASE EXAMPLE EMPIRICAL RESULTS
We extend an implicit learning framework to handle noisy data in the language > Until now, examples had to be exact, i.e. assignments Consider a fitness watch monitoring the heart rate (hr) and blood oxygen (0x) » For the noisy case, PAC finds similarly good estimates in significantly
of linear arithmetic. We prove that our extended framework keeps the existing > Idea: allow examples to be intervals, so we can handle noisy data levels of the wearer. It calculates wearer’s stress level using formula: stress = lower time
polynomial-time complexity guarantees and provide the first empirical Theoretical contributions hr — 5 - (ox — 90), which is hard-coded into its knowledge base A along with > Running time also grows much more slowly when increasing sample size
investigation of this hitherto purely theoretical framework. _ _ bounds for hr and ox. The watch alerts the user if the stress level exceeds 50, and dimensionality
» Extended the PAC-Semantics framework to accept interval-valued examples encoded as the query a = stress > 50. The watch gets regular, but imprecise S With noise or outliers. PAC alwavs finds an answer. while Incal P fails o
LINEAR ARITHMETIC IN SMT » Proof that extended framework stays in polynomial time sensor readings in the form of intervals ¢ 9. The illustration below shows that find a model in most cases y ’
Optimisation the watch answers the query using the entailment A A ™ = « on each . : :
> We focus on learning in an expressive language: linear arithmetic in » Adapted framework to solve linear optimisation problems from examples example, which works even when data is missing (shown as *). > When Incal P finds 2 model, estimates can be closer to real optimum but

Satisfiability Modulo Theories (SMT) are not always feasible

» Given hard constraints, what is the optimal objective value? - - -
» Quantifier-free subset of first-order logic with arithmetic operators > Created OptimisePAC P J - ___________________________ _ » PAC always gives feasible estimates
> Eg.(@a=0)A(b<2a)A(c=a+bh _ _ W= (97 <hr <99) A (96 < 0x <97) |
9. (@2 0)A (b <20 A(c=a+Db) + Works like exponential search $O= 7 Shr<9NAO6Sox <o) | CONCLUSION
» Has polynomial-time entailment procedures _ ) : ¢ =92 <hr<94)A(98=<o0x=<99) _ - _ S
> First we run DecidePAC repeatedly to get a rough estimate of $P® = (103 < hr < 105) A (*< ox <¥) : > We introduced ability to handle noisy data and solve optimization problem
IMPLICIT LEARNING optimal ObJeCt'_Ve value _ _ _ y > We have shown that skipping the step of creating an explicit model can
» Then we run binary search to find optimum to desired accuracy ) have advantages for running time and robustness to noise and outliers
» Learning explicit representations for SMT problems is not tractable Empirical investigation DecidePAC > Direction for the future: extending the framework to other classes of
> ldea: Answer queries implicitly, i.e. by using examples directly > Created first ever implementation of this framework & ?9642 thz fozo(;o/\) A formulas in first-order logic and/or SMT
> No explicit model is created, as illustrated below » Compared it with an explicit algorithm: IncaLP - (stress — b — % (ox — 90))
Explicit Training data Implicit Examples » IncalLP: Create an SMT model of the examples and then find REFERENCES
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> Query does not have to be fully valid, only (1 — €)-valid. l.e. = N + T8 et R L 25 115.1939677 P PP y
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