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Abstract

Robustly learning in expressive languages with real-world data continues to be a
challenging task. Numerous conventional methods appeal to heuristics without any
assurances of robustness. While PAC-Semantics offers strong guarantees, learning
explicit representations is not tractable even in a propositional setting. However,
recent work on so-called "implicit" learning has shown tremendous promise in
terms of obtaining polynomial-time results for fragments of first-order logic. In this
work, we extend implicit learning in PAC-Semantics to handle noisy data in the
form of intervals and threshold uncertainty in the language of linear arithmetic. We
prove that our extended framework keeps the existing polynomial-time complexity
guarantees. Furthermore, we provide the first empirical investigation of this hitherto
purely theoretical framework. Using benchmark problems, we show that our
implicit approach to learning optimal linear programming objective constraints
significantly outperforms an explicit approach in practice.

1 Introduction

Data in the real world can be incomplete, noisy and imprecise. Approaches from the knowledge
representation communities take great care to represent expert knowledge; however, this knowledge
can be hard to come by, challenging to formalize for non-experts, and brittle. In contrast, connectionist
approaches, such as neural networks, have been particularly successful in learning from real-world
data. However, they represent knowledge as distributed networks of nodes, which is neither human-
readable nor very explainable (Gunning and Aha, 2019).

In this work, we are concerned with learning in expressive languages, where knowledge is represented
as logical formulas. In a logical context, Valiant (2000) recognized that the challenge of learning
should be integrated with deduction. He proposed a semantics to capture the quality possessed by
the output of (probably approximately correct) PAC-learning algorithms, the PAC-Semantics. We
will focus on an implicit learning approach in PAC-Semantics, where the step of creating an explicit
representation is circumvented. Very recently, the learnability results have been extended to first-order
clauses in (Belle and Juba, 2019), and then to fragments of satisfiability modulo theories (SMT) in
(Mocanu, Belle, and Juba, 2020). We build upon these results in the following ways:

1. Extending the PAC-Semantics framework to be able to handle imprecise data.
2. Proving that the polynomial running time is preserved.
3. Realising the first implementation of the PAC-Semantics framework.
4. Empirically demonstrating the advantages of implicit reasoning regarding speed and noise

resistance.
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2 Extending the implicit PAC-Semantics framework

In this section, we extend the implicit PAC-Semantics framework from Mocanu, Belle, and Juba
(2020) to allow examples to be intervals while maintaining a polynomial running time. The rationale is
that real-world data is often imprecise and thus better represented as intervals rather than assignments.

Formulas are expressed in SMT, which is a generalisation of Satisfiability (SAT). It includes function
symbols of the form {0, 1,+,�,, <,�, >,=, 6=}, interpreted in the usual way over the reals. The
framework is PAC-Semantics, which was introduced by Valiant (2000) to capture the quality possessed
by knowledge learned from independently drawn examples from some unknown distribution D. The
output produced using this approach does not express validity in the traditional (Tarskian) sense.
Instead, the notion of validity is then defined as follows:

Definition 1: [(1� ✏)-validity (Valiant, 2000)] Given a joint distribution D over ⌃n, we say that a
Boolean function f is (1� ✏)-valid if Pr⇢⇢⇢2D[f(⇢⇢⇢) = 1] � 1� ✏.

The reasoning problem of interest is deciding whether a query formula ↵ is (1� ✏) valid. Knowledge
about the distribution D comes from the set of examples ⇢⇢⇢, independently drawn from this distribution
and from a collection of axioms � which constitutes the knowledge base.

Input: Procedure A, query ↵, variables ✏, �, � 2 (0, 1), list of partial intervals {�(1), ...,�(m)},
knowledge base �

Output: Accept if there exists a derivation proof S of ↵ from � and formulas '1,'2, ... that are
simultaneously witnessed true with probability at least (1� ✏+ �) on BBB(D)
Reject if �) ↵ is not (1� ✏� �)-valid under D

begin

B  b✏⇥mc, FAILED  0.
foreach k in m do

if A(↵,�(k),�) returns UNSAT then

Increment FAILED.
if FAILED > B then return Reject;

return Accept

Algorithm 1: DecidePAC

Unfortunately, explicitly learning even simple models like DNF formulas is believed to be intractable.
(Daniely and Shalev-Shwartz, 2016). However, Khardon and Roth (1997) and Juba (2013) observed
that by circumventing the need to produce an explicit representation, learning to reason can be
effectively reduced to classical reasoning, leading to a notion of implicit learning. The idea is
to answer the query directly using the examples, which is demonstrated in algorithm 1. Mocanu,
Belle, and Juba (2020) have shown that implicit reasoning is polynomial-time for SMT queries with
partial assignments of examples. We now show that polynomial running-time is preserved for partial
intervals of examples. To turn complete assignments into partial intervals, we introduce the notion of
a blurring process:

Definition 2: [Blurring process] Given a full assignment ⇢⇢⇢(k) = {⇢1⇢1⇢1, . . . ,⇢n⇢n⇢n}, a blurring function is
defined as B : ⌃n ! {⌃[{�1,+1}}2n, which produces a set of intervals �(k) consistent with the
assignment ⇢⇢⇢(k), i.e., with the property that for each ⇢⇢⇢i, B(⇢⇢⇢)2i�1  ⇢⇢⇢i  B(⇢⇢⇢)2i, where B(⇢⇢⇢)2i�1

is a random value from (�1,⇢⇢⇢i] - lower bound, and B(⇢⇢⇢)2i is a random value from [⇢⇢⇢i,1) - upper
bound. We refer to elements of the set ⌃2n as partial intervals, where a full assignment is bound by
the lower and upper bound. A blurring process B is a blur-valued random variable (i.e. a random
function).

In this way, we allow the degree of uncertainty of an observation to be given by the width of the
interval in which the real value lies. This leads us to the main theorem (Note that a formula ' is
witnessed true under partial intervals � if it is true under every assignment possible under �.):

Theorem 3: [Implicit learning] Let � be a conjunction of constraints representing the knowledge

base and an input query ↵. We draw at random m = 1
2�2 ln

1
� sets of intervals {�(1),�(2), ...,�(m)}
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from BBB(D) for the distribution D and a blurring process BBB. Suppose that we have a decision

procedure A. Then with probability 1� �:

• If (�) ↵) is not (1� ✏� �) - valid with respect to the distribution D, Algorithm 1 returns

Reject; and

• If there exists some KB I such that � ^ I |= ↵ and I is witnessed true with probability at

least (1� ✏+ �) on BBB(D), then Algorithm 1 returns Accept.

Moreover, if A runs in polynomial-time (in the number of variables, size of query, and size of

knowledge base), so does Algorithm 1.

With this theorem, we have extended the previous result to deal with the more complex setting of
threshold uncertainty. The proof can be found in the appendix. However, like the previous PAC-
Semantics results, the approach is geared for answering queries and has been primarily a theoretical
framework. In contrast, conventional methods, although not always offering learnability guarantees,
provide an explicit hypothesis. One type of problem such methods are used for is finding the optimal
objective function value within hard constraints.

To solve such problems using DecidePAC, we have created the "OptimisePAC" algorithm. In essence,
we find an optimal value of an objective function f by repeatedly running DecidePAC(�, bound�f,✏)
with different bounds. This is done in a manner similar to exponential search: we double the bound
until we find an approximate area in which the objective value lies. Then we run binary search up to
the desired accuracy to find much tighter bounds. The full pseudo-code can be found in the appendix,
along with a proof of its functionality. We will use OptimisePAC in the next section to compare it
with an explicit approach in practice.

3 Empirical analysis

We compare this line of work with an existing approach, an algorithm proposed by Schede, Kolb, and
Teso (2019) that induces linear programs from data examples. Linear programming is an optimisation
technique for a linear objective function. The problem consists of an optimisation function f(x),
where x 2 Rn, and feasibility region expressed as the set of constraints A · x  b. Such linear
programs can be expressed as SMT formulas.

Figure 1: Running times and objective value estimates for simplexn, where n = # dimensions

We use the following benchmark and standard SMT problems for our analysis: simplexn, cuben,
pollution and police (Hillier and Lieberman, 1995). All these problems consist of a set of hard
constraints, which define the feasible region or the boundaries of the shape, and a set of soft constraints

3



(a) No noise.
IncaLP always found a model.

(b) Noise with std of 0.1p
6
⇡ 0.04.

IncaLP could not find a model
20/60 times.

(c) Noise with std of 0.25p
6

⇡ 0.1.
IncaLP could not find a model
37/60 times.

Figure 2: Objective values for pollution. True minimum: 32.15.

in the form of a linear objective function. The goal is to find the optimum objective value within the
hard constraints. In the case of pollution, for example, the objective function represents the amount
of pollution and has to be minimised.

The implicit PAC approach and the explicit IncaLP approach differ in how they reach this goal:
in the PAC model, we directly compute the optimal objective value from positive examples using
OptimisePAC. In contrast, the IncaLP approach first creates an SMT model from positive and negative
examples and then finds the optimal objective value for the model by standard MaxSMT techniques.

Results On the theoretical front, one of the advantages of implicit learning is argued to be efficiency.
By skipping the step of creating an explicit model, one can give polynomial-time guarantees. As
shown in Figure 1, this effect is significant in practice. PAC is able to get similarly good objective
value estimates at significantly lower running times for simplexn.

With the extension we introduced in this paper, PAC can now handle noisy data using intervals. If we
add Gaussian noise with a standard deviation � to each data point, we can represent it using intervals
of width 4 log d · �, where d is the dimensionality. This interval covers about 95% of the density,
which is why we set a validity of 95% for DecidePAC. The noise and intervals were capped at the
domain boundaries.

Figure 2 shows how PAC compares to IncaLP. We adjusted the noise to the dimensionality, meaning
that for a noise value of n, the std of the Gaussian � = np

d
. In cases where IncaLP does find a model,

it gives an estimate that is closer to the true objective value. However, in 2b, IncaLP failed to find a
model on 20/60 runs, and in 2c, it failed on 37/60 runs. Moreover, the PAC estimate is pessimistic on
purpose. This gives values farther away from the optimum but ensures that they are reachable. PAC
always finds feasible objective values, while IncaLP undershoots the minimum for pollution almost
always: Even in the noiseless case, only 10% of found objective values were reachable, for cases
with noise, it was 0%. We remark that the empirical behaviour we discussed are similar across the
four problems. Graphs for all problems, including tests on data with outliers are in the appendix.

Note that these results do not mean that IncaLP, on the whole, is inferior to our PAC implementation.
They do fundamentally different things: IncaLP creates a model, while PAC answers queries implicitly.
For some problems, such as objective value optimisation, it is possible to skip the model making
process. As we have shown, doing that comes with advantages in speed and noise resistance. However,
in some contexts, having an explicit model is desirable, in which case the implicit learning paradigm
might be harder to work with. Put simply, OptimisePAC is not a replacement for IncaLP.

4 Conclusion

We proposed a general framework for learning implicitly in linear arithmetic from noisy and imprecise
examples. By considering a novel optimisation variant, we were able to empirically compare and
outperform an explicit approach in terms of running time and resistance to noise and outliers. A
natural direction for the future is to consider whether this implementation strategy extends to other
classes of formulas in first-order logic and/or SMT.
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Learning Implicitly with Noisy Data in Linear Arithmetic -
Appendix

1 Proofs

1.1 Implicit learning

Theorem 1: [Implicit learning] Let � be a conjunction of constraints representing the knowledge base and

an input query ↵. We draw at random m = 1
2�2 ln

1
� sets of intervals {�(1)

,�
(2)

, ...,�
(m)} from BBB(D) for the

distribution D and a blurring process BBB. Suppose that we have a decision procedure A. Then with probability

1� �:

• If (�) ↵) is not (1� ✏��) - valid with respect to the distribution D, Algorithm 1 returns Reject; and

• If there exists some KB I such that �^I |= ↵ and I is witnessed true with probability at least (1�✏+�)
on BBB(D), then Algorithm 1 returns Accept.

Moreover, if A runs in polynomial-time (in the number of variables, size of query, and size of knowledge

base), so does Algorithm 1.

Proof Consider a sound and complete decision procedure A for the language domain aforementioned and
the reasoning problem of deciding � |= ↵. By definition of soundness and completeness, � |= ↵ if and only if
A(�^¬↵) = UNSAT. Suppose we receive observations about the world as sets of blurred intervals � and we
wish to decide entailment of the aforementioned problem with respect to these blurred observations, hence
calculate A(�|� ^ ¬↵|�) = UNSAT. This holds i↵ A(� ^ � # ^¬↵) = UNSAT, i↵ A(� ^ I ^ � # ^¬↵) =
UNSAT for any KB I that is witnessed true under �. If � ) ↵ is unsatisfied on a point drawn from D,
it is not entailed by the blurred example from B(D) either, so FAILED increments when such points are
drawn, and does not increment when a suitable I is witnessed true. By Hoe↵ding’s inequality, the returned
value satisfies the given conditions with probability 1�� for m examples. The decision procedure will return
UNSAT in polynomial time T (n) depending on the size of the knowledge base and query. Every iteration
costs the time for checking feasibility which is bounded by the time complexity of the decision procedure
used for deciding satisfiability. The total number of iterations is m = 1

2�2 log
1
� , corresponding to the number

of samples drawn, which gives us the total time bound of O(T (n) · 1
�2 log

1
� ).

1.2 OptimisePAC

The pseudocode for the OptimisePAC algorithm is given in algorithm 1. We now prove that the algorithm
will find a su�ciently close estimate of the objective value in polynomial time:

Theorem 2: Let � be a conjunction of constraints representing the knowledge base and as input preference

function f . We draw at random m = O( 1
�2 log

1
� ) partial intervals �

(1)
, ...,�

(m)
from BBB(D) for a distribution

D and a blurring process BBB. Suppose that we have a decision procedure A for linear programming running

in time T (n). Then the OptimisePAC algorithm will return a significant bits of a value v
⇤
that is attainable

on I ^� for all KBs I that are witnessed with probability 1� ✏+ �, and such that for the value u
⇤
obtained

by incrementing the ath bit, � ) (f  u
⇤) is (1 � ✏ � �)-valid (resp., f � u

⇤
with the a

th
bit decreased if

minimising) in time O(T (n) ·m · a).

Proof We will use a theorem due to [Talagrand(1994)] (Theorem 4.9 of [Anthony and Bartlett(1999)]):
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Input: Preference function f , validity ✏ 2 (0, 1), accuracy a 2 Z+, list of intervals
� = {�(1)

,�
(2)

, ...,�
(m)}, goal 2 {”maximise”, ”minimise”}

Output: t estimated optimal value w.r.t. f
begin

if goal = ”minimise” then f  �f ;
if DecidePAC(�, 0 � f, ✏) accepts then

if DecidePAC(�,�1 � f, ✏) rejects then

l �1, u 0
else

b �2
while DecidePAC(�, b � f, ✏) accepts do b b⇥ 2;
l b, u b/2

else

if DecidePAC(�, 1 � f, ✏) accepts then

l 0, u 1
else

b 2
while DecidePAC(�, b � f, ✏) rejects do b b⇥ 2;
l b/2, u b

for a iterations do

if DecidePAC(�, (l + u)/2 � f, ✏) accepts then u (l + u)/2 else l (l + u)/2;
if goal = ”minimise” then return �l else return l;

Algorithm 1: OptimisePAC

Theorem 3: [[Anthony and Bartlett(1999), Theorem 4.9]] There are positive constants c1, c2, c3 such that

the following holds. Suppose that F is a set of functions defined on the domain X and that F has a finite

VC dimension d. Let � 2 (0, 1) and m 2 Z+
. Then the probability that the empirical mean of any f 2 F on

m examples di↵ers from its expectation by more than � is at most c1c
d
2e

�c3�
2m

.

Thus for m � c3
�2 (d ln c2 + ln c1

� ), the bound is at most �.
Recall, the VC dimension is the size of the largest set of points that can be given all labels by a class

(“shattered”). Consider a fixed class of Boolean functions on the blurred samples, and which is parameterized
by the objective value bounds b. This function outputs the value 1 whenever � ^ � ^ (f(x)  b) returns
UNSAT, and 0 otherwise. We will show that this class has VC-dimension at most 1.

We will show that for any two blurred examples �1 and �2, it is not possible to get all the labellings
{(1, 1), (1, 0), (0, 1), (0, 0)} by varying b. Suppose there is some b⇤ for which �1 gives the label 1 and �2 gives
0, meaning that for �1 the bound f  b⇤ does not hold and for �2 it does. Since f  b

⇤ holds for �2, then
for any b > b

⇤, the decision procedure will return 0 for �2. On the other hand, the bound f  b
⇤ will not

hold for �1 for all values b < b
⇤. Thus, in either direction, one of the labels for one of the two remains the

same. So, it is not possible to get all possible labellings of �1 and �2 and so the VC-dimension is  1.
Therefore, by Talagrand’s bound, given m examples, with probability 1� � DecidePAC answers correctly

for all queries made by OptimisePAC. In particular, we note that the algorithm maintains the invariant that
l is the largest value for which l � f was rejected by DecidePAC. Since it was not accepted, we see that for
any I that is witnessed with probability � 1� ✏+ �, there must exist some x satisfying I ^� with f(x) > l

(resp., f(x) < l if minimising). Since DecidePAC does not reject with u, �) f(x)  u is (1� ✏� �)-valid,
where u and l only di↵er by the value of the a

th most significant bit. Thus l is as needed.
Finally, the decision procedure A is run each time we call the DecidePAC algorithm. This gives us the

total run time stated in the theorem.

2 Experimental setup

We ran tests on all four problems. For each test, we had 10 independent runs on increasing sample sizes
from 50 to 500 and increasing dimensions from 2 to 4, if applicable. We have 50% positive and 50% negative
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samples. To ensure reproducibility, we ran each test with the seed 111921. The hardware we used was an
Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, with 16 GB of RAM running Scientific Linux 7.6.

As for parameter settings, we chose the SelectDT heuristic for the IncaLP approach, as it is the most
appropriate according to their paper. We also ran our experiments using the same initial configurations as
their released code. We set the accuracy for OptimisePAC to 60, which is the number of times our intervals
are divided by 2. The reason being that we can match the accuracy of double precision floating-point values,
which is about 2�53.

We will make the source code public after reviews close.

3 Results

Here we show all the graphs from our experiments. Note that the following hold:

• The true minimum objective value for pollution is about 32.15 and for police it is 3.37.

• The objective functions for simplexn and cuben are randomly generated and vary for each run. They
are a linear combination of all variables with coe�cients and a constant, each varying from -1 to 1.
Thus, the true objective value f is bounded by �(d + 1)  f  d + 1, where d is the number of
dimensions. The goal is to maximise that value.

• For a noise parameter n, the standard deviation � of the Gaussian noise is adjusted by the dimension-
ality: � = np

d
.

• An outlier is a data point with the wrong label, i.e. a point within the feasible region labelled as
outside and vice-versa. An outlier value of 0.01 means that 1% of the points have wrong labels.

• Simplexn and cuben have dimensions ranging from 2 to 4. Pollution has 6 dimensions and police has
5.

Figure 1: IncaLP always found a model.
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Figure 2: IncaLP failed to find a model 76% of the time.

Figure 3: IncaLP failed to find a model 89% of the time.
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Figure 4: IncaLP failed to find a model 86% of the time.

Figure 5: IncaLP always found a model.
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Figure 6: IncaLP failed to find a model 73% of the time.

Figure 7: IncaLP failed to find a model 93% of the time.
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Figure 8: IncaLP failed to find a model 82% of the time.

Figure 9: IncaLP always found a model.
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Figure 10: IncaLP failed to find a model 33% of the time.

Figure 11: IncaLP failed to find a model 62% of the time.

Figure 12: IncaLP failed to find a model 65% of the time.

8



Figure 13: IncaLP failed to find a model 13% of the time.

Figure 14: IncaLP failed to find a model 53% of the time.

Figure 15: IncaLP failed to find a model 77% of the time.
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Figure 16: IncaLP failed to find a model 52% of the time.
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