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Abstract
Recently, neural-symbolic architectures have achieved success on commonsense
reasoning through effectively encoding relational structures retrieved from external
knowledge graphs (KGs). However, current methods rely on quality and contextu-
alized knowledge structures (i.e., fact triples) retrieved at the pre-processing stage
and overlook challenges caused by incompleteness of a KG (low coverage) and
irrelevant retrieved facts in the reasoning context. In this paper, we present a novel
neural-symbolic approach, named Hybrid Graph Network (HGN), which jointly
generates feature representations for new triples (as a complement to existing edges
in the KG), determines the relevance of the triples to the reasoning context, and
learns graph model parameters for reasoning. Our method learns a compact graph
structure through filtering edges that are unhelpful to reasoning. We show marked
improvements on three commonsense reasoning benchmarks.

1 Introduction
Commonsense knowledge plays a vital role in human communication, but the fact that relevant
commonsense knowledge is rarely mentioned explicitly makes it hard for neural models to achieve
human-level language understanding. Fig. 1 shows an example in a commonsense reasoning bench-
mark named CommonsenseQA [31], where external relational knowledge about concepts is required
to infer the answer. Existing commonsense reasoning frameworks can be classified into informa-
tion retrieval-augmented (IR-augmented) methods [2, 24] and knowledge-graph-augmented (KG-
augmented) methods [34, 12]. We focus on KG-augmented methods as KGs provide structured

relational knowledge between concepts, making them a good fit for tasks that require reasoning.

The core challenges of incorporating KG knowledge into context comprehension are how to obtain
related evidence–i.e., a contextualized knowledge graph of inter-related fact triples; and how to
reason over the graph. Most existing works [16, 34, 19] simply extract triples from KGs based on the
concepts mentioned in the context, which is far from ideal as KGs are likely incomplete [22] and
helpful facts could be missing. What’s worse, since KGs are context-agnostic, the extracted facts
don’t necessarily relate to the sentence’s central topic, and could thus be distracting.

To address these issues, we propose Hybrid Graph Network (HGN), a novel framework for KG-
augmented commonsense reasoning. It leverages both extracted facts (with high precision) and
generated facts (with high recall) by building a contextualized knowledge graph with hybrid (extracted
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Figure 2: Architecture of a typical neural-symbolic
model for commonsense reasoning.

+ generated) edge features. It then dynamically prunes unreliable and unrelated edges, leading to
a superior graph structure for reasoning. Fig. 1 presents an example of the learned graph structure
with hybrid edge features, where critical evidence triples are generated, and edges between concepts
that are not closely related are pruned. We conduct extensive experiments on three commonsense
reasoning benchmarks and show consistent improvement over previous KG-augmented methods.

2 Methodology
We focus on the task of commonsense question answering (QA), while the proposed framework
can be easily applied to other tasks that require commonsense reasoning. Given a question q, the
model is asked to select the correct answer from a set of candidate answers {ai} with the help of
symbolic knowledge from an external knowledge graph G = {E ,R,F}, where E ,R,F denote the
set of entities, relations, and facts (triples), respectively. A fact takes the form of a triple (h, r, t) 2 F ,
where h, t 2 E are the head and tail entities, and r 2 R is their relation.

We approach multiple-choice QA by measuring the plausibility ⇢(q, a) between a question q and a
candidate answer a, where the candidate answer with the highest plausibility score will be chosen.
Fig. 2 illustrates the workflow of a neural-symbolic architecture for QA. The final score is predicted
based on the unstructured textual evidence and structured graph evidence. We adopt a pretrained
language model as the text encoder to get the statement vector: s = ftext([q, a]), where [·, ·] denotes
sentence concatenation. For graph evidence, we build a directed contextualized knowledge graph

G = (V,E) with adjacency matrix A 2 {0, 1}n⇥n, which stores structured knowledge related to the
question and answer context for reasoning. We tackle the challenge of missing facts by densifying an
extracted graph with generated facts. We resolve the issue with noisy facts by jointly pruning the
graph structure and learning network parameters (see an overview of our approach in Fig. 3).

We denote the label for (q, a) as y, where y = 1 means a is the correct answer to q and y = 0 means
a is a wrong answer. Then the overall learning objective on the training set Dtrain is defined as:

L =
X

(q,a,y)2Dtrain

⇥
Ltask(q, a, y) + � · Lprune(A

K)
⇤
, (1)

where � is a hyperparameter, AK represents the final graph structure after K layers’ refinement. L
can be decomposed into Ltask for the classification task and Lprune for graph structure learning.

Graph Initialization. To effectively acquire knowledge from G, we perform string matching to
ground concepts in (q, a) to the entity set of G. V = V Q [ V A where V Q and V A are the sets
of recognized concepts in q and a. Node feature vectors {xi} are initialized using TransE [4]
embeddings. We consider all directed edges between question concepts and answer concepts:
E = (V A ⇥ V Q)[ (V Q ⇥ V A), which serve as discriminative features in evaluating the plausibility.
Note that for a large portion of (vi, vj) 2 E, there may not be any fact from G that describes their
relation. We therefore turn to use an edge feature generator fgen(·, ·) to capture their relational
feature. Implementation details can be found in §A. For any (vi, vj) 2 E, the edge feature x(i,j) is
calculated in a hybrid way. When there exists r 2 R such that (vi, r, vj) 2 F , x(i,j) = r where r is
the learnable embedding of relation r. Otherwise, x(i,j) = fgen(vi, vj).

Reasoning with Weighted Graph. Although we use an edge feature generator to densify the
connections between question and answer concepts, we are still facing the challenges of unreliable
edges (edges with wrong or low-quality attributes) and unrelated edges (edges irrelevant to answering
the question) in the contextualized graph G. To account for the quality difference among different
edge features, we employ a rescaling operation on each edge to control its information flow. The
rescaling factor can also be interpreted as the edge weight, which indicates the helpfulness of a certain
edge in reasoning. We build our model based on the formulation of Graph Networks (GNs) [3] by
instantiating the node-to-edge (v ! e) and edge-to-node (e ! v) message passing functions for each
layer. The propagation rule at layer l is defined as follows.
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Figure 3: Overview of our HGN model. We jointly learn the graph structure and network parameters.
Darkness of edges indicate their weights. Red variables are updated in the previous step.
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Here Nj is the set of vj’s neighboring nodes, f l
v!e, f l

u, f l
w and f l

e!v are implemented as different
multilayer perceptrons (MLPs), h0

(i,j) = x(i,j), h0
i = xi, A0 = A. Basically, for each edge

(vi, vj) 2 E, we learn a normalized weight Al
(i,j). Therefore, our model can learn to “softly”

prune an edge by assigning to it a weight that is close to 0. We use attentive pooling to summarize
the final layer’s hidden representations of all nodes as the graph vector: ↵i = sWatthK

i , g =P
i:vi2V

e↵iP
j:vj2V e↵j h

K
i , where Watt is a learnable matrix for calculating the attention score ↵i for

each node vi. We concatenate s and g and use an MLP follwed by a softmax layer to calculate the
probability for each candidate answer: ⇢(q, a) = fMLP ([s;g]), {⇢̂(q, ai)} = softmax{⇢(q, ai)}.

Pruning with Entropy Regularization. To encourage the model to take decisive pruning steps on
the graph structure, we add a regularization term to the loss function to penalize non-discriminative
edge weights. In an extreme case, a blind model will assign the same weight to all edges, where
usually noisy edges are mixed with helpful edges. To avoid that, we minimize the entropy of the
edge weight distribution as an auxiliary training objective. The motivation is that information entropy
can be used to measure the informativeness of the edge weight predictions. A lower entropy, caused
by a skewed distribution, means the model is incorporating more priors (e.g. the plausibility of its
corresponding fact and the reasoning context) into edge weight prediction. Formally, the entropy
regularization term of G is calculated as: Lprune(AK) = �

P
(i,j):(vi,vj)2E AK

(i,j) logA
K
(i,j).

Model Training. We adopt the cross-entropy loss for the main classification task and add the penalty
term so that the graph structure can be jointly learned with graph reasoning. Then the overall learning
objective on the training set Dtrain (Eq. 1) is derived as:

L =
X

(q,a,y)2Dtrain


�y log ⇢̂(q, a)� �

X
(i,j):(vi,vj)2E

AK
(i,j) logA

K
(i,j)

�
. (3)

We train the whole model end-to-end by minimizing L using RAdam [17] optimizer.

3 Experiments
Experimental Setup. We evaluate our proposed framework on three multiple-choice commonsense
QA datasets: CommonsenseQA [31], OpenbookQA [21] and CODAH [5] (details in §B). We use
ConceptNet [30] as knowledge graph G. For ftext, we experiment with BERT-base, BERT-large [6]
and RoBERTa (-large) [18] to validate our model’s effectiveness over different text encoders. For
OpenbookQA, we also build our model on top of an IR-augmented method named “AristoRoBERTa”
to study if strong IR-augmented methods could still benefit from KG knowledge and our reasoning
method. We compare our model with KG-augmented methods including RN [27], RN + Link
Prediction, RGCN [28], GN [3], GconAttn [34], KagNet [16], MHGRN [7], PathGenerator [32].
Details can be found in §C.

Results. Tables 1, 21 and 3 show performance comparisons between our models and baseline
models on CommonsenseQA, OpenbookQA, and CODAH respectively. Our HGN shows consistent
improvement over baseline models on all datasets except that it achieves the second-best performance
on OpenbookQA with AristoRoBERTa as the text encoder. We also submitted our best model to
OpenbookQA’s leaderboard.2 Our model ranks the first among all models using AristoRoBERTa

1Some of the baseline results on CommonsenseQA and OpenbookQA are reported by Feng et al. [7] and Wang et al. [32]. Mean and
standard deviation of four runs are presented for all models except KagNet.

2We tried more than 4 seeds for the leaderboard submission, which is different from the setting of Table 2.
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Methods BERT-Base BERT-Large RoBERTa
60% Train 100% Train 60% Train 100% Train 60% Train 100% Train

LM Finetuning 52.06(±0.72) 53.47 (±0.87) 52.30 (±0.16) 55.39 (±0.40) 65.56 (±0.76) 68.69 (±0.56)

RN [27] 54.43 (±0.10) 56.20 (±0.45) 54.23 (±0.28) 58.46 (±0.71) 66.16 (±0.28) 70.08 (±0.21)
RN + Link Prediction - - 53.96 (±0.56) 56.02 (±0.55) 66.29( ±0.29) 69.33 (±0.98)
RGCN [29] 52.20 (±0.31) 54.50 (±0.56) 54.71 (±0.37) 57.13 (±0.36) 68.33 (±0.85) 68.41 (±0.66)
GN [3] 53.67 (±0.45) 55.65 (±0.51) 54.78 (±0.61) 57.81 (±0.67) 68.78( ±0.67) 71.12 (±0.45)
GconAttn [33] 51.36 (±0.98) 54.41 (±0.50) 54.96 (±0.69) 56.94 (±0.77) 68.09( ±0.63) 69.88 (±0.47)
KagNet [16] - 56.19 - 57.16 - -
MHGRN [7] 54.12 (±0.49) 56.23 (±0.82) 56.76 (±0.21) 59.85 (±0.56) 68.84( ±1.06) 71.11 (±0.81)
PathGenerator [32] - - 55.47 (±0.92) 57.21 (±0.45) 68.65( ±0.02) 71.55 (±0.99)

HGN 55.39 (±0.34) 57.82 (±0.23) 57.23(±0.56) 60.43 (±0.54) 70.34 (±0.79) 72.88 (±0.83)

Table 1: Accuracy on CommonsenseQA inhouse test set. We use the inhouse split as Lin et al. [16].
Methods RoBERTa AristoRoBERTa
LM Finetuning 64.80 (±2.37) 77.40 (±1.64)

RN [27] 63.65 (±2.31) 75.35 (±1.39)
RN + Link Prediction 66.30 (±0.48) 77.25 (±1.11)
RGCN [29] 62.45 (±1.57) 74.60 (±2.53)
GN [3] 66.20 (±2.14) 77.25 (±0.91)
GconAttn [33] 64.75 (±1.48) 71.80 (±1.21)
MHGRN [7] 66.85 (±1.19) 77.75 (±0.38)
PathGenerator [32] 68.40 (±0.31) 80.05 (±0.68)

HGN 69.00 (±0.95) 79.00 (±1.43)

Table 2: Test accuracy on OpenbookQA.

Methods BERT-large RoBERTa
LM Finetuning 65.89 83.20

RN [27] 66.24 82.85
RGCN [29] 65.27 82.24
GN [3] 65.89 82.24
MHGRN [7] 66.17 83.21

HGN 66.71 83.75

Table 3: Test accuracy on CODAH. We use 5-fold
cross validation with the same split as Yang et al. [35].

as the text encoder (see §D), demonstrating the effectiveness of our proposed approach. We notice
that most baseline models fail to achieve improvement over AristoRoBERTa. That may be because
AristoRoBERTa has access to knowledge collected through IR, making it difficult to further benefit
from KG knowledge if a weak reasoning approach is adopted. The improvement on CODAH is less
significant compared to the other two datasets. As Chen et al. [5] suggest, questions in CODAH
mainly target commonsense reasoning about quantitative, negation and object reference. In this
case, relational knowledge provided by ConceptNet may only offer limited help. We further perform
ablation studies and a user study on the refined graph structures, which are presented in §E and §F.

4 Related Work
KG-Augmented Commonsense Question Answering. Literature in this domain mainly studies
how to encode the contextualized graph extracted from KG. For example, Lin et al. [16] propose
a model comprised of GCN and LSTM to account for both the global graph structure and local
paths connecting question concepts and answer concepts. Ma et al. [20] use BERT to generate the
embedding for the pseudo-sentence representing each edge and pool over edge features to get the
graph encoding. Crucial difference is that they assume a static graph and there’s no operation on
enriching or denoising the graph structure. While Wang et al. [32] build the contextualized graph with
a path generator, they reason over a static graph and neglect the noise introduced during generation.

Graph Structure Learning. Works that jointly learn the graph structure with the downstream task
can be classified into two categories. One line of works directly learn an unweighted graph with
desired edges for reasoning. Kipf et al. [14] and Franceschi et al. [9] sample the graph structure from
a predicted probabilistic distribution with differentiable approximations. Norcliffe-Brown et al. [23]
calculate the relatedness between any pair of nodes and only keep the top-k strongest connections
for each node to construct the edge set. The other line of works consider a weighted graph with all
possible edges and softly filter out the noisy ones by downweighting them. An adjacency matrix
with continuous values is incorporated into message passing. Jiang et al. [11] and Yu et al. [36] use
heuristics to regularize the learned adjacency matrix. Hu et al. [10] consider the question embedding
for predicting edge weights. Our HGN falls into the second category and therefore avoids information
loss caused by hard pruning and approximation. Our uniqueness is that we construct the graph with
hybrid features based on extracted and generated facts and we let node features, edge features, edge
weights, and the global signal (statement vector) collectively determine the evolution of the graph
structure. These empower our model with greater capacity and flexibility for KG-augmented QA.

5 Conclusion
In this paper, we propose a neural-symbolic framework for commonsense reasoning named HGN.
To address the issues with missing facts in the external knowledge graph and noisy facts in the
contextualized knowledge graph, our proposed HGN jointly generates features for new edges, refines
the graph structure, and learns the parameters for graph networks. Experimental results on three
commonsense reasoning benchmarks demonstrate the effectiveness of our model.
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A Edge Feature Generator

As an implementation of fgen, we adopt GPT-2 [25], which is pretrained on large corpora and
achieves great success on a wide range of tasks involving sentence generation, as a generator to
generalize the facts from the knowledge graph. We first convert each fact (h, r, t) 2 F into a word
sequence with a “prompt-generation” format:

h
h̃; $; t̃; $; h̃; r̃; t̃

i
, where h̃, r̃, t̃ are the word sequence

of h, r, t respectively, $ denotes the delimiter token used by GPT-2, and [·; ·] denotes word sequence
concatenation. We denote the synthetic sentence as s(h,r,t) =

h
x(h,r,t)
1 , . . . , x(h,r,t)

n(h,r,t)

i
and finetune

GPT-2 on all synthetic sentences created from F with the language modeling objective:

Lgen(F) =
X

(h,r,t)2F

n(h,r,t)X

i=1

logP
⇣
x(h,r,t)
i | x(h,r,t)

1 , . . . , x(h,r,t)
i�1

⌘
. (4)

After that, given any two concepts (vi, vj), we build a prompt as [ṽi; $; ṽj ; $] and let the model to
generate the following word sequence. We denote the whole sentence (both prompt and generation) as
s(vi,vj), and the hidden states of each word during generation as h1, . . . ,hT where T is the sentence
length. To get the relational feature, we apply a learnable linear transformation to the averaged hidden
states of all words in the sentence: fgen(vi, vj) = W

h
1
T

PT
i=1 hi

i
+ b and ensure that fgen(vi, vj)

has the same dimension as r.

B Datasets

CommonsenseQA [31] is a multiple-choice QA dataset targeting commonsense. It’s constructed
based on the knowledge in ConceptNet. Since the test set of the official split (9741/1221/1140 for
OFtrain/OFdev/OFtest) is not publicly available, we compare our models with baseline models on
the inhouse split (8500/1221/1241 for IHtrain/IHdev/IHtest) used by previous works [16, 7, 32].

OpenbookQA [21] is a multiple-choice QA dataset modeled after openbook exams. Besides 5957
elementary-level science questions (4957/500/500 for train/dev/test), it also provides an open book
with 1326 core science facts. Solving the dataset requires combining facts from open book with
commonsense knowledge.

CODAH [5] contains 2801 sentence completion questions testing commonsense reasoning skills.
We perform 5-fold cross validation using the same split as Yang et al. [35].

C Compared Methods

RN [27] builds the graph with the same node set as our method but extracted edges only. The graph
vector is calculated as g = Pool({MLP([xi;x(i,j);xj ]) | (vi, r, vj) 2 F}). RN + Link Prediction
differs from RN by only considering the generated relation between every question and answer
concepts. The relation is predicted using knowledge graph completion method based on TransE [4]
embeddings. RGCN [28] extends Graph Convolutional Networks (GCNs) [15] with relation-specific
transition matrices during message passing. It operates on the same graph as RN. The graph vector
is calculated as g = Pool({hK

i | vi 2 V }). GN [3] presents a general formulation of GNNs. We
instantiate it with the layerwise propagation rule defined in Eq. 2. It differs from our HGN in that: (1)
it only considers extracted edges; (2) all edge weights are fixed to 1. GconAttn [34] softly aligns the
nodes in question and answer and do pooling over all matching nodes to get g. KagNet [16] uses
an LSTM to encode relational paths between question and answer concepts and pool over the path
embeddings for graph encoding. MHGRN [7] generalizes GNNs with multi-hop message passing.
PathGenerator34 [32] learns a path generator and pool over embeddings for all generated paths
connecting question and answer concepts.

3PathGenerator is a contemporaneous work that learns a edge feature generator based on multi-hop paths, which has greater expressive
power than our (1-hop) edge feature generator. Our reasoning framework is compatible with any implementation for fgen, and we will build
on PathGenerator in our future experiments.

4We choose PG-Global as the representative variant for PathGenerator as it performs better than PG-Local. PG-Full is an ensemble model
of PG-Global and RN, so we don’t consider it in our comparisons.
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D Leaderboard of OpenbookQA

Methods Text Encoder Test Acc
UnifiedQA [13] T5 87.2
T5 + KB T5 85.4
T5 [26] T5 83.2
PathGenerator [32] AristoAlbert 81.8
HGN (ours) AristoRoBERTa 81.4
AristoRoBERTa + KB AristoRoBERTa 81.0
MHGRN [7] AristoRoBERTa 80.6
PathGenerator [32] AristoRoBERTa 80.2
KF + SIR [1] RoBERTa 80.2
AristoRoBERTa AristoRoBERTa 80.2

Table 4: Leaderboard of OpenbookQA. Our HGN ranks first among all submissions using AristoRoBERTa
as the text encoder.

E Ablation Studies

(a) CommonsenseQA. (b) OpenbookQA.
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(c) Ablations on model variants.

Figure 4: Ablation studies. (a)(b) Performance of HGN and baseline models with different amounts of training
data; (c) Performance of different model variants.

Training with less labeled data. Fig. 4 (a)(b) show the results of our model and baseline mod-
els when trained with 20%/40%/60%/80%/100% of the training data on CommonsenseQA and
OpenbookQA. Our model gets better test accuracy under all settings. The improvement over the
knowledge-agnostic baseline (LM-finetuning) is more significant with less training data, which
suggests that incorporating external knowledge is more helpful in the low-resource setting.

Study on more model variants. To better understand the model design, we experiment with two
more variants on CommonsenseQA and OpenbookQA. GN all-generation doesn’t consider extracted
facts and instead generate edge features between all question and answer concepts. It then runs
GN over the graph. HGN w/o statement vector doesn’t consider s in Eq. 2, which isolates the
graph encoder from the text encoder. Fig. 4 (c) shows the results of the ablation study. Comparing
“GN all-generation” with “HGN w/o edge weights”, we can conclude that extracted facts play an
important role in HGN and can’t be replaced by generated features. The high precision of extracted
facts is still desirable even if we have a model to generate relational edges. Comparing “HGN w/o
statement vector” with “HGN”, we find that accessing context information is also important for graph
reasoning, which means information propagation and edge weight prediction should be conducted in
a context-aware manner.

F User Study

To assess our model’s ability to refine the graph structure, we compare the graph structure before and
after being processed by HGN. Specifically, we sample 30 questions with its correct answer from the
development set of CommonsenseQA and ask 5 human annotators to evaluate the graph output by
GN (with adjacency matrix Aextract and extracted facts only) and our HGN (with adjacency matrix
AK). We manually binarizing AK by removing edges with weight less than 0.01.
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Given a graph, for each edge (fact), annotators are asked to rate its validness and helpfulness. The
validness score is rated as a binary value in a context-agnostic way: 0 (the fact doesn’t make sense),
1 (the fact is generally true). The helpfulness score measures if the fact is helpful for solving the
question and is rated on a 0 to 2 scale: 0 (the fact is unrelated to the question and answer), 1 (the fact
is related but doesn’t directly lead to the answer), 2 (the fact directly leads to the answer). The mean
ratings for 30 pairs of (GN, HGN) graphs by 5 annotators are reported in Table 5. We also include
another metric named “prune rate” calculated as: 1� # edges in binarized AK

# edges in A0 , which measures the portion
of edges that are assigned very low weights (softly pruned) during training and is only applicable to
HGN. The Fleiss’ Kappa [8] is 0.51 (moderate agreement) for validness and 0.36 (fair agreement) for
helpfulness. The graph refined by HGN has both more edges and more valid edges compared to the
extracted one. The refined graph also achieves a higher helpfulness score. These all indicate that our
HGN learns a superior graph structure with more helpful edges and less noisy edges, which is the
reason for performance improvement over previous works that rely on extracted and static graphs.
Two cases comparing the extracted graph (“Graph of GN”) with our refined graph (“Graph of HGN”)
are showed in Fig. 5.

Contextualized Graph GN (Aextract) HGN (AK)

Number of Edges 3.65 (±2.73) 4.38 (±3.24)
Number of Valid Edges 2.67 (±1.95) 3.15 (±1.98)
Percentage of Valid Edges 71.64% 78.51%
Average Helpfulness Score of Edges 0.90 (±0.50) 1.16 (±0.51)
Prune Rate - 77.13%

Table 5: User study on learned graph structures. 30 pairs of contextualized graphs output by GN and HGN
are evaluated by 5 annotators.

(a) Case I: HGN prunes unhelpful edges in the extracted graph.

(b) Case II: HGN generates helpful new edges.

Figure 5: Two cases showing the graphs output by GN and HGN.
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