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Abstract

Reinforcement learning (RL) agents seek to maximize the cumulative reward
obtained when interacting with their environment. Users define tasks or goals for
RL agents by designing specialized reward functions such that maximization aligns
with task satisfaction. This work explores the use of techniques from knowledge
representation and reasoning, and in particular high-level symbolic action models,
as a framework for defining final-state goal tasks and automatically producing
their corresponding reward functions. We also show how automated planning
can be used to synthesize high-level plans that can guide hierarchical RL (HRL)
techniques towards efficiently learning adequate policies. We provide a formal
characterization of taskable RL environments and describe sufficient conditions
that guarantee we can satisfy various notions of optimality (e.g., minimize total
cost, maximize probability of reaching the goal). In addition, we do an empirical
evaluation that shows that our approach converges to near-optimal solutions faster
than standard RL and HRL methods and that it provides an effective framework for
transferring learned skills across multiple tasks in a given environment.
The full version of this paper appeared at the ICAPS 2020 conference [9].

1 Introduction

Reinforcement learning (RL) methods represent the state of the art for solving complex continuous
control problems in robotics and other domains that evade human modeling [19, 12, 11, 6, 3, 1].
For instance, the OpenAI lab recently showed that model-free RL can be used to learn to control a
human-like robot hand to purposefully manipulate complex objects, such as a Rubik’s Cube [1]. The
strength of model-free RL comes from being able to learn policies that maximize an external reward
signal by directly interacting with the environment—without requiring a predefined model of the
complex physics equations that control it (nor trying to learn them).

This generality comes with a cost, though. As environment dynamics and reward structures are
initially unknown, RL mostly relies on random exploration to collect rewards and then improve the
current policy. As such, RL can be sample inefficient (i.e., requires billions of interactions with the
environment before learning better-than-random policies). Further, RL systems are typically not
taskable. If you would like an RL agent to solve task A, then you would have to program a reward
function such that its optimal policy would solve A. If, later on, you would like the agent to perform
task B, then you would have to program a new reward function for B and the RL agent would have to
learn a brand new policy for B from scratch—which is a problem known as transfer learning [16]. A
number of approaches have been proposed to address these shortcomings including efforts to learn
hierarchical representations [5], to define options or macro-actions that can be used by the RL system
[15], or to learn skills that are independent of the state space where they were learned [10].
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Our interest in this paper is in leveraging high-level symbolic planning models and automated plan
synthesis techniques, in concert with state-of-the-art RL techniques, with the objective of improving
sample efficiency and creating systems that are human taskable. Our efforts are based on the
observation that some approximated understanding of the environment can be characterized as a
symbolic planning model—a set of properties of the world and a formal description of actions that
cause those properties to change in predictable ways—while leaving (possibly complex) low-level
aspects of the environment (e.g., the frame by frame outcome of dropping a pen) unspecified.

As a result, our AI agent gets the best of both worlds: (1) it is taskable as the user can define tasks as
goal conditions in the symbolic domain (and a reward function is automatically computed for such a
task), (2) it improves sample efficiency as the high-level plans can be used for transferring learning
from previously learned policies, and (3) it can learn complex low-level control policies as it relies on
model-free RL to accommodate for all the information missing in the high-level model. To achieve
this, we build on ideas for learning by instructions in RL [2, 17, 18]. That work shows that sample
efficiency can be improved if a manually generated description of the task is given to the agent. In
this work, we propose to automatically generate useful instructions for RL agents using the high-level
model of the environment and describe an approach—based on hierarchical reinforcement learning
(HRL)—that exploits such instructions. We compare our approach to standard forms of HRL and
show that the combination of high-level symbolic planning and low-level reinforcement learning is an
effective method for specifying tasks to RL agents and, more importantly, for learning high-quality
policies—for previously unseen tasks—up to an order of magnitude faster than using standard RL.

Note that the idea of combining high-level symbolic planning with low-level RL has a long history.
Well-known examples include work done by Ryan (2002), Grounds and Kudenko (2008), Grześ and
Kudenko (2008), Yang et al. (2018), and Lyu et al. (2019). Informed by this work, we contribute a
formal characterization of a relevant problem, which we call taskable RL, and a novel approach to
transfer learned policies and guide exploration in RL based on high-level plans. Building on this, we
provide theoretical analysis regarding sufficient conditions for ensuring our approach satisfies various
notions of optimality and show empirical results that validate the efficiency of our approach.

2 Taskable Reinforcement Learning

We assume reader familiarity with RL, HRL, the options framework used in HRL, and with the basics
of symbolic planning (see [9] for more details). One of the great advantages of symbolic planning is
that specifying new simple tasks for a given domain model is very easy. It is with this in mind that
we define the problem of taskable RL, where final-state goal tasks can be specified trivially for a
given RL environment. To define goals for tasks in such an environment, we assume the existence of
a set of high-level propositions, P , and a labeling function L : S → 2P that establishes a mapping
between low-level states and high-level propositions. These propositions are supposed to represent
important state properties that may affect the outcomes of actions or their costs, or that may be of
significance to an end user of the system. Finally, we also assume the existence of a constant R that
establishes a reward bonus received by the agent when it accomplishes a task. With this, we define
taskable RL environments and their associated final-state goal tasks.

Definition 1 (Taskable RL Environment). A taskable reinforcement learning environment is defined
by a tuple E = 〈S,A, r, p, γ, P, L,R〉, where 〈S,A, r, p, γ〉 is an MDP, P is a set of propositional
variables, L : S → 2P is a labeling function, and R ∈ R is a parameter called the goal reward.

Definition 2 (Final-state Goal Task). A final-state goal task for taskable RL environment E =
〈S,A, r, p, γ, P, L,R〉 is defined as a tuple G = 〈G+, G−〉 where its elements are disjoint subsets
of P . We say a state g ∈ S is a goal state when G+ ⊆ L(g) and G− ∩ L(g) = ∅. We denote
the set of all goal states as G. The objective for this task is to find the optimal policy for the MDP
MG = 〈S,A, rG, pG, γ〉, where rG and pG are defined as follows. rG(s, a, s) = R + r(s, a, s′)
if s′ ∈ G and s 6= s′; and rG(s, a, s′) = 0 if s′ ∈ G and s = s′; and rG(s, a, s) = r(s, a, s′)
otherwise. Similarly, pG(s′|s, a) = 0 if s ∈ G and s 6= s′; and pG(s′|s, a) = 1 if s ∈ G and s = s′,
and pG(s′|s, a) = p(s′|s, a) otherwise.

Intuitively, the goal conditions are used for defining fictional terminal states in the environment. The
modified transition probabilities ensure that exiting a goal state is impossible. In turn, the modified
reward function ensures that a reward bonus is given when a goal state is first reached, and that no
further reward can be accrued after that.
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The main motivation behind Definitions 1 and 2 is to allow end-users to define tasks for RL agents
with minimal effort. In the same spirit, the main guarantee that we should provide to that end-user is
that the RL agent will optimize its behaviour towards actually accomplishing their tasks. Interestingly,
whether a taskable RL environment provides such a guarantee depends on how it defines r, γ, and R.
For instance, if r is of the restricted form r : S ×A× S → R−, γ = 1, and R = 0, then the optimal
policy is guaranteed to reach any final-state goal in a taskable environment (as long as such a goal is
reachable). Another combination that holds this property is γ ≤ 1, R = 1, and r(s, a, s′) = 0.

Planning Models in RL. The general idea is to use planning models and solutions computed for
them as guidance for solving RL tasks in the low-level environment. To do so, we associate symbolic
models to taskable RL environments. Given a taskable environment E = 〈S,A, r, p, γ, P, L,R〉, a
symbolic model for E is specified asM = 〈D, α〉, where D = 〈F ,A〉 is a planning domain with
F = P and α : A → 2P × 2P is a function that associates planning actions with conditions over P .

We will use α to associate finite-state goal tasks for the taskable RL environment E with the planning
actions. Each such task defines an option. Whenever the task is accomplished, the option terminates.
Formally, given a condition C = 〈C+, C−〉, we can define the set of all low-level states that satisfy it
as T (C) = {s ∈ S | C+ ⊆ L(s), C− ∩ L(s) = ∅}. Then, for each planning action a ∈ A, we can
define an associated option with termination set Ta = T (α(a)) and reward function ra = rα(a) (see
Definition 2). Finally, we will define an option set O consisting of one option for each distinct α(a)
generated this way. Note that two or more planning actions may be associated with the same option.

For a given symbolic model and planning task, we can easily compute a sequential plan by using
an off-the-shelf planner. Such a plan can subsequently be used as a naive meta-controller for an
HRL system by directly executing—in the provided order—each of the options associated with
the actions in the plan. This basic approach is denoted as seq. A variant in which we relax this
sequential plan into a partial-order plan [4] is denoted pop. For both cases, we also consider the use of
regression-based plan execution monitoring (seqm and popm) described in the full paper [9]. Finally,
we compare and contrast against two basic benchmark approaches: direct use of q-learning over the
low-level environment (ql), and use of the options framework over the set of options associated with
the model (hrl).

3 Empirical Evaluation

We evaluated our approach by considering two low-level environments and respective high-level
models. To best evaluate the effectiveness at leveraging previous experience, we also defined a
sequence of 4 tasks for each environment, ordered roughly by level of complexity. For each tested
algorithm, the evaluation proceeded as follows. Each task was trained on for a fixed number of
training steps. Whenever a goal state was reached, the task was restarted. If a task ran for more
than 1, 000 steps without reaching the goal, it was also restarted. When the limit of total training
steps for a task was reached, the meta-controller policy was reset and training began on the next
task. When using seq, pop, seqm, popm, or hrl, the trained policies for the options were transferred
between tasks. In all cases, option policies and meta-controllers were trained by q-learning. To
actually evaluate the quality of the learned policies, we paused the training every 10, 000 training
steps and ran a number of independent trials using the policy as learned at that point.

3.1 Benchmark Environments.

The first test environment is the OFFICEWORLD running example. Each training episode was
initialized with a random initial state, and the evaluation trials were done from 10 different predefined
initial states. To account for different outcomes when tie-breaking, each such trial was run 10 times.
Our second environment is the Minecraft-inspired gridworld [2]. The grid contains raw materials
(e.g., wood, iron) and locations where the agent can combine materials to produce refined materials
(e.g., wooden planks), tools (e.g., hammer), and goods (e.g., goldware). The high-level actions allow
for collecting each of the raw materials, and for achieving the combinations. The types of tasks that
we evaluated on include examples such as “make a pickaxe,” which requires getting wood and iron
and taking them to various locations, or “get a gem,” which requires first making a pickaxe and then
going to the location with the gem. We ran experiments using random initial states for training and
evaluating on 5 predefined initial states. Each experiment was run 5 times.
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(a) OFFICEWORLD
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(b) MINECRAFTWORLD

Figure 1: Experimental performance obtained in two separate environments. We report the mean
reward obtained by two baseline algorithms, q-learning (ql) and standard HRL (hrl), by our basic
approach in which a sequential plan is executed directly (seq), and by our main approach in which
HRL is restricted to execute a partial-order plan (pop).

3.2 Results and Discussion.

To adequately display how our approach is capable of converging quickly to high-quality solutions,
Figure 1 displays a comparison between our main approaches—seq and pop—and the two basic
baseline algorithms in both benchmark domains. Each graph displays the reward obtained after
training with the labeled algorithm for the specified number of steps.

The experimental results show that—once the option policies are sufficiently well trained—our
approach can significantly outperform ql and hrl when the number of training steps is limited. For
instance, in the last task of the OFFICEWORLD, pop needed only 70, 000 training steps to converge
to a policy that resulted in traces that were typically 10 steps away from optimal. In contrast, hrl
needed at least 1, 800, 000 steps before finding a policy of comparable quality and did not appear
to converge to stability in less than the 5, 000, 000 training steps we allowed. That said, hrl did
reach policies that resulted in slightly better solutions—only 5 steps worse than optimal. Q-learning
converged to optimality after 3, 850, 000 training steps.

The tasks in the MINECRAFTWORLD domain are significantly harder than those of the OFFICE-
WORLD domain and serve as a stress test for our approaches. In particular, the planning model is
not strictly consistent with the low-level environment so the tasks exhibit a variety of pitfalls that
make accidentally undoing previous work very easy. For example, if the agent is carrying a piece of
wood and walks through a cell marked as a tool bench, it will automatically convert the wood into
a wooden plank, even if it actually needs the wood for some other reason. Despite this, our results
show that seq leads to reasonable results after very little training. In contrast, pop does not perform
any better than hrl. In Figure 2 (see the full paper [9]), we show what happens when we address
the unexpected outcomes with execution monitoring. In the OFFICEWORLD, the policies obtained
by seqm seem to result in slightly more stable performance. For the MINECRAFTWORLD, popm
significantly outperforms pop, even if it still does not converge to high-quality policies.

4 Conclusions and Future Work

To conclude, we believe that the automatic generation of goal-relevant instructions is one of the key
aspects that will enable RL systems to be both taskable and scalable. The combination of symbolic
action models with model-free RL allows for solving problems that require both intricate control
and long-term combinatorial planning. Taskable RL represents a valuable formalism for describing
problems of this kind, and planning has shown to be a useful technique to aid in improving sample
efficiency by enabling structured methods of exploration and transfer learning.
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