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Abstract

In this paper we present Neural Concept Network (NCN), an architecture for
relational learning through neural guided search. The architecture is composed of
input nodes, which represent concepts given as facts in a knowledge-base, output
nodes, which represent positive and negative ground instances of a concept to
learn, and an intermediate layer, called implication layer, that captures the space
of possible solutions. As this space is in practice very big, the implication layer is
dynamically constructed during the training process as a neural guided search that
learns the most relevant solutions. We evaluate the approach over two classes of
problems, inductive learning and knowledge-base completion, and show that NCN
achieves similar or better performance than existing methods for these tasks.

1 Introduction

Relational learning is essential for various cognitive tasks including reasoning, planning, problem
solving, and language comprehension. Although deep learning approaches can easily deal with
high-dimensional input and extract meaningful representations through supervised and unsupervised
learning tasks (LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016), when it comes to
relational learning, existing approaches struggle in terms of learning general-purpose abstractions
(Puebla et al., 2020). The need to learn general definitions of high-level semantic concepts has
recently been highlighted as critical for generalisation, transfer, continuous learning, and (hierarchical)
composition of concepts (Bengio, 2020). Symbolic AI can provide powerful algorithms for learning
first-order rule-based concept definitions from labelled ground instances (Muggleton et al., 2012).
But, despite their advantages, existing approaches struggle with scalability and fall short in terms of
learning relational concepts from unstructured data such as images.

Recent work has focused on how to combine the complementary benefits of Artificial Neural
Networks (ANN) and symbolic representation, see (Garcez et al., 2019) for a survey. Most of existing
approaches tackle knowledge-base reasoning through the learning of embedded representations of
symbolic concepts (Bordes et al., 2013; Socher et al., 2013; Trouillon et al., 2016; Rocktäschel and
Riedel, 2017). Their main drawback is the inability to generalise to unseen objects, limiting the
transferability of their learned models. Neural-LP (Yang et al., 2017) addresses this by learning
an entity independent model which is transferable across domains. δ-ILP (Evans and Grefenstette,
2018), on the other hand, provides differentiable inductive learning over an hypothesis space that
is represented symbolically. Although capable of learning rule-based models from raw data, such
approach is not scalable and limited to learning specific classes of predefined rule templates.

This paper presents an architecture, called Neural Concept Network (NCN), for structured rule
learning that exploits a differentiable mechanism as a neural guided search over a set of possible
solutions. This allows the architecture to be scalable whilst achieving similar or better performance
than existing approaches. NCN learns concepts, expressed using first-order relations. Inference
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in NCN involves computing the gating tensor which is based on the network structure and which
semantically filters the input and maps it to the grounded output. The network structure is based on
an intermediate layer, called implication layer, which is composed of nodes that express Boolean
combinations of relational concepts. This layer is dynamically constructed during the training process.
Learning in NCN involves therefore learning the structure as well as parameters of the network.
We evaluate the approach over two classes of problems, inductive learning and knowledge-base
completion. We compare its performance with neuro-symbolic systems, such as δ-ILP (Evans and
Grefenstette, 2018), NTP (Campero et al., 2018), Neural-LP (Yang et al., 2017), as well as a symbolic
rule-mining system called AMIE+ (Galárraga et al., 2015). Our results show that NCN achieves
similar or better performance as compared to these existing methods.

2 Architecture

The architecture of NCN is characterised by two types of nodes, Implication Unit (IU) and Concept
unit (CU). A concept unit identifies a predicate and arity. Input and output nodes of the architecture
are concepts units and capture, respectively, given facts in a knowledge-base (input nodes) and
positive and negative ground instances of concepts to learn (output or target nodes). The IUs form the
intermediate layer of the architecture. An IU represents a conjunction of concepts from the preceding
layer (e.g., input nodes), and can be seen as a structured filter over such concepts. Specifically, an
IU only produces an output ground concept (i.e. through its link to the target CUs) when there is a
variable binding of its conjunction of concepts, that is satisfied by the facts represented by the input
nodes. As different IU nodes may produce the same output ground instance concept, the target output
node can be seen as a disjunction of alternative definitions of the target concept that needs to be
learned. A single layer instantiation of the NCN architecture is given in Figure 1, where the Input
Layer is formed by two input nodes representing binary predicates in1 and in2 respectively, whose
instances are input facts from a given knowledge base. Layer 1 includes the Implication Layer (IL)
and the output Concept layer (CL). The former is composed of a set of IUs that imposes a structured
filter over the input facts, and the latter includes a single output node representing a binary target
predicate. In general, the output CL can be composed of as many CUs as the different predicates
(i.e. concepts) that need to be learned. Note also that a NCN architecture may include more than one
layer. In this case the CL of the hidden layers includes latent CUs needed to learn the final target
concept. In what follow we refer to a general NCN with L layers.

NCN architecture is based on sparse connections. The edges from the CU nodes of layer l − 1 to the
IU of layer l are represented by the sparse weight matrix W (1),l, where l ∈ {1, ..., L} and L is the
total number of layers1. Similarly, the edges from the IUs to CUs in layer l are represented by the
sparse weight matrix W (2),l. Inference in NCN is based on the gating tensor Gl – a sparse binary
tensor – that captures the facts from the layer l − 1 and the IUs used in layer l needed to generate the
CUs facts in layer l. The shape of the gating tensor is (m, j, k, q, r), where m is the total number
of literals in the IL and is equal to Σilength(IU l

i ), where i is the number of IUs in layer l, j is the
number of CUs in layer l − 1, k and q are the number of unique argument tuples of facts of CUs in
layer l − 1 and l respectively, and r is the maximum number of proofs for each output fact of the
IL and is defined by a hyperparameter. Computing the gating tensor involves grounding the rules
represented by the IUs (see Appendix A for a detailed example).
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Figure 1: Example of NCN with one layer.

The forward propagation through a layer involves three tensor operations (Equations 1 - 3). Equation 1
filters and maps the input activation values onto the gating tensor and aggregates over the input facts.

1Although we present here a generic formulation for multiple layers, the evaluation in this paper is based on
a single layer architecture as depicted in Figure 1, where L = 1.
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Θl is the intermediate value of the IL of layer l. Φl is the output value of the IL. Intuitively, Equations
1 and 2 together are similar to a convolution operator except that, in this case, the filter (represented
by the IU) is applied semantically to the input, i.e. the filter has a semantic prior as opposed to
the structural prior based on locality in CNN filters (LeCun et al., 2015). The filter is dynamically
imposed on the input, by means of the gating tensor Gl in Equation 1. Equation 3 aggregates the
output of the IUs connected to the CUs, to obtain the final output Al of shape (p, q), where p is
the number of output CUs in layer l. Functions f1 and f2 are defined as tanh and max (0, tanh)
respectively.

3 Learning

Learning in NCN involves learning the structure, characterised by the IUs of the intermediate
layers, as well as the parameters of the network. The objective of the structure learning can be
defined as obtaining the set of IUs, corresponding to rules that best approximate the definition of
the target CU. The learning of the weights is performed using the learning objective function given
in Equation 4. This is modelled as a Binary Cross-Entropy (BCE) problem where Y , the truth
value of a target concept, is a binary label (1 and 0) for a positive and negative instance of the
target concept, respectively. The regularisation loss LL1 is based on L1 norm of the parameters
which characteristically induces sparsity. The loss LLen is based on the scaled L1 norm of the CL
parameters, where a IU to CU edge’s norm is scaled by the number of conjunct concepts associated
with the corresponding IU. This can be described as a term for structural regularisation, and represents
a penalty term that helps prefer IUs with less concepts in conjunction over IUs with longer conjunction
of concepts. This is in line with the Occam’s razor principle. Appendix B.2 presents a brief ablation
experiment over the loss terms with related results, in the case of the UMLS datset.

J (W ) = λ1 · LBCE

(
AL, Y

)
+ λ2 · LL1 (W ) + λ3 · LLen

(
W (2)

)
(4)

The learning of the structure of an IL of the NCN architecture is performed through an iterative
process (see algorithm in Appendix B.1), up to a given maximum number of IU length. Each iteration
makes use of two functions specialisation and pruning. The former adds new IUs that have longer
conjunction of concepts (i.e. seen as specialisations of existing (shorter) IUs), in order to reduce
the inference of negative examples. The pruning function, instead, retains (from one iteration to the
next), those IUs that are more likely to define the target concept. The pruning uses a magnitude-based
approach, similar to (Han et al., 2015; Guo et al., 2016; Frankle and Carbin, 2019), to eliminate edges
from the IL to the CL in a layer. The algorithm can, therefore, be seen as a beam search that iteratively
explores the search space of possible rules (i.e. IUs) whilst containing its size through pruning at the
end of each iteration. This allows scalable learning without using restrictive rule templates, as the
algorithm only explores the part of the search space that may help in achieving best coverage of the
target concept.

4 Experiments, Conclusion, and Future Work

We evaluate NCN on inductive learning problems. We consider the non-recursive tasks presented
in (Evans and Grefenstette, 2018), as NCN does not yet support the learning of recursive rules. For
comparison purposes we adopt the same evaluation metric used in (Evans and Grefenstette, 2018),
i.e. percentage of runs that achieve less than 1e-4 mean squared test error. We evaluate NCN over
100 test runs for each task. Table 1 shows the results compared with δ-ILP (Evans and Grefenstette,
2018) and NTP (Campero et al., 2018). Further discussion is given in Appendix C.

Table 1: Results for inductive learning tasks including Undirected Edge (UE), Adjacent To Red
(ATR), and Two Children (TC). The − symbol means results not reported in the related paper.

Task

System Predecessor Son Grandparent Husband Uncle Father UE ATR TC

δ-ILP 100 100 96.5 100 70 100 100 50.5 95
NTP 100 100 100 – – 100 100 100 0
NCN 100 100 100 100 100 100 100 100 100
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We have also considered knowledge-base Completion (KBC) tasks with large datasets to evaluate the
scalability of NCN, where the objective is to learn a model for each relation in a knowledge-base
that accurately predicts facts in the test set. Specifically, we have carried out experiments over the
UMLS, Kinship, WN18, and FB15k-237 datasets, summarised in Table 2, using the same test set as in
Neural-LP (Yang et al., 2017). The learning task is set up so that the training is carried out separately
for each relational concept, in terms of other relations used as input concepts. The evaluation metrics
used in this case are Mean Reciprocal Rank (MRR), average of the reciprocal rank of the test facts,
and Hits@10, percentage of test facts ranked in top ten (Bordes et al., 2013). The ranking of each
ground test fact is computed following the method described in (Bordes et al., 2013): two separate
corruption sets, one for each fact’s argument are generated, and the rank of a test fact is the average of
its ranks w.r.t each set separately. Table 3 shows the results for the KBC tasks where UMLS (3) and
Kinship (3) represent learning rules with up to three body literals, instead of two. Finally, we have
evaluated NCN w.r.t. AMIE+ (Galárraga et al., 2015) using Inductive knowledge-base Completion
(IKBC) metrics based on Sensitivity, Precision, and F1 score. To do so, the output of NCN was
converted into Boolean values by applying a threshold on the activation values of the target CUs.
Appendix D details the experiment setup and provides further discussion on the results.

Table 2: Main features of the knowledge-base completion datasets.

Dataset Relations Train (Positive) Test Total Facts Entities

UMLS 46 5,896 633 6,529 135
Kinship 25 9,586 1,100 10,686 104
WN18 18 146,442 5,000 151,442 40,943
FB15k-237 237 289,650 20,466 310,116 14,541

Table 3: Results for knowledge-base completion tasks showing mean and standard deviation (shown
in brackets) values over 5 test runs, except for FB15k-237 results which are based on single test runs.

Dataset KBC Metric Neural-LP NCN IKBC Metric AMIE+ NCN

MRR 0.733 (0.008) 0.681 (0.020) Sensitivity 0.897 0.805 (0.015)
UMLS Hits@5 0.877 (0.007) 0.870 (0.019) Precision 0.022 0.210 (0.015)

Hits@10 0.921 (0.005) 0.951 (0.004) F1 0.043 0.333 (0.018)

MRR 0.730 (0.009) 0.860 (0.009) Sensitivity 0.946 0.818 (0.012)
UMLS (3) Hits@5 0.886 (0.013) 0.956 (0.007) Precision 0.017 0.283 (0.011)

Hits@10 0.930 (0.007) 0.987 (0.003) F1 0.034 0.420 (0.011)

MRR 0.612 (0.004) 0.620 (0.006) Sensitivity 0.999 0.896 (0.004)
Kinship Hits@5 0.789 (0.003) 0.861 (0.006) Precision 0.020 0.197 (0.005)

Hits@10 0.906 (0.002) 0.957 (0.003) F1 0.039 0.323 (0.007)

MRR 0.602 (0.008) 0.651 (0.006) Sensitivity 1.000 0.880 (0.006)
Kinship (3) Hits@5 0.783 (0.010) 0.871 (0.007) Precision 0.015 0.243 (0.006)

Hits@10 0.905 (0.004) 0.961 (0.003) F1 0.029 0.381 (0.007)

MRR 0.944 (0.000) 0.951 (0.029) Sensitivity 0.747 0.749 (0.000)
WN18 Hits@5 0.946 (0.000) 0.985 (0.008) Precision 0.427 0.789 (0.088)

Hits@10 0.954 (0.000) 0.992 (0.006) F1 0.543 0.766 (0.041)

MRR 0.251 0.246 Sensitivity 0.335 0.429
FB15k-237 Hits@5 0.315 0.303 Precision 0.029 0.003

Hits@10 0.373 0.389 F1 0.053 0.006

We have presented a novel architecture for structured relational learning through neural guided search.
Experiments using a single layer NCN demonstrates that the approach is scalable to large datasets,
whilst preserving comparable if not better performance. As part of our future work, we aim to extend
the approach in two ways: firstly, by integrating NCN with other differentiable architectures (e.g.,
CNN) to support end-to-end relational learning from unstructured data (e.g., images); secondly, by
extending structure learning to multiple layers with the objective of learning latent and interdependent
concepts. We envisage to use a learnable controller that will navigate the search space to build
hierarchical dependencies of latent concepts with localised changes.
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Appendices

A Architecture – Computing The Gating Tensor

Figure 2 shows an example instance of NCN with an input layer, containing two input CUs, an
implication layer composed of four IUs, and an output concept layer containing a CU connected to the
four IUs. Each IU captures a conjunction of input CUs as indicated in the table of Figure 2. The length
of an IU is defined by the number of atoms it contains. The following is an example for computing the

Layer 1Input Layer

in1 /2

in2 /2
target /2

IU1
1

IU2
1

IU0
1

IU3
1

IU Description IU Length

IU1
0 in1 (V 2, V 1) 1

IU1
1 in2 (V 2, V 1) 1

IU1
2 in1 (V 1, V 3) ∧ in2 (V 3, V 2) 2

IU1
3 in2 (V 1, V 3) ∧ in2 (V 3, V 2) 2

Figure 2: An example instance of NCN with IU description.

gating tensor G1 of the network shown in Figure 2, given the input layer facts as shown in Table 4 and
the IUs given in Figure 2. The first step involves grounding of the IUs. The input facts consist of seven
unique argument tuples: [(a, b), (c, b), (d, c), (d, f), (d, g), (e, c), (e, f)]. The grounding is computed
using the input layer facts and the IUs, and results in implication layer facts shown in Table 4, com-
posed of nine unique argument tuples: [(b, a), (b, c), (c, d), (c, e), (d, b), (e, b), (f, d), (f, d), (g, d)].
For example, the fact iu21(d, b) was computed using the facts in1(d, c) and in2(c, b) of the input
layer and the IU1

2 . To capture this, two values of the gating tensor are set to 1 at the following indices:
G1[2, 0, 2, 4, 0] and G1[3, 1, 1, 4, 0]. To elaborate, the indices [2, 0, 2, 4, 0] are obtained as follows:

• The first index represents the literal position in a concatenated list of all literals of IUs in layer
1: [in1(V 2, V 1), in2(V 2, V 1), in1(V 1, V 3), in2(V 3, V 2), in2(V 1, V 3), in2(V 3, V 2)].

• The second index represents the corresponding CU in the input layer (which is in1 in this
case).

• The third index represents the position of the tuple (d, c) in the aforementioned list of unique
argument tuples in the input layer.

• The fourth index represents the position of (d, b) in the previously mentioned list of unique
argument tuples in layer 1.

• The final index represents the proof in the total number of proofs for lat2(d, b) from IU1
2 ,

which in this case is 0 because there’s only a single proof.

Table 4: Input and Implication layer facts.

Input Facts Impplication Layer Facts

in1(a, b) iu01(b, a) iu21(d, b)
in1(d, c) iu01(c, d) iu31(e, b)
in1(d, f) iu01(f, d)
in1(d, g) iu01(g, d)
in2(c, b) iu11(b, c)
in2(e, f) iu11(f, e)
in2(e, c) iu11(c, e)
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B Neural Guided Structure Learning

B.1 Algorithm

Figure 3 shows the neural guided structure learning algorithm where the intermediate and final
GD optimisation steps are based on 400 and 1000 epochs respectively for the evaluation. The
input consists of input facts along with their activation values, target facts and their labels, and
hyperparameters including: maximum IU length allowed, and the number of IUs to keep after
pruning. Specialisation generates new IUs by adding an additional literal to the conjunction and
considers all possible variable combinations with the restriction that at least one variable of the new
literal must exist in the IU to be specialised. We use Adam optimisation (Kingma and Ba, 2015) for
the intermediate and final gradient descent steps.

Pruning

Specialisation

Stopping 
Condition

Parameter Initialisation 
and Gradient Descent 

Optimisation

Parameter Reinitialisation 
and Final Gradient 

Descent Optimisation

Return: ncn instance

Yes

Architecture initialisation

Initialise the network where 
the IL contains all possible 
single body IUs of the input 

Concepts

No

Input: Input facts, 
Examples, Max IU 
length, Num IUs to 
keep after pruning

Figure 3: Neural guided structure learning algorithm for a single layer NCN.

B.2 Objective Function Ablation Experiments

The ablation experiments aim to investigate the effect of the regularisation loss terms LL1 and LLen.
The results are based on four settings with different cost functions:

J1 (W ) = λ1 · LBCE

(
AL, Y

)
(5)

J2 (W ) = λ1 · LBCE

(
AL, Y

)
+ λ2 · LL1 (W ) (6)

J3 (W ) = λ1 · LBCE

(
AL, Y

)
+ λ3 · LLen

(
W (2)

)
(7)

J4 (W ) = λ1 · LBCE

(
AL, Y

)
+ λ2 · LL1 (W ) + λ3 · LLen

(
W (2)

)
(8)
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The experiments are based on the UMLS dataset under the same setting used for inductive knowledge-
base completion tasks. The max IU length for the experiments is set to 3 – i.e. a maximum of three
literals are allowed in the body of the target concept and hence the training involves 3 structure
learning iterations. The number of IUs to keep after each pruning step is set to 10. The table 5 shows
mean and standard deviation (of 5 test runs) of Sensitivity, Precision, and F1 scores on the test set
for each setting. As compared to J2, the length loss in J3 results in a slight drop in precision but
a significant increase in Sensitivity. In J4, the addition of LL1 loss improves the sensitivity and
precision as compared to J3.

Table 5: Results for ablation experiments.

Cost Function Sensitivity Precision F1

J1 0.311 (0.012) 0.192 (0.013) 0.237 (0.011)
J2 0.476 (0.014) 0.199 (0.016) 0.281 (0.018)
J3 0.661 (0.006) 0.169 (0.005) 0.269 (0.005)
J4 0.677 (0.016) 0.171 (0.005) 0.273 (0.007)

C Inductive Learning Tasks

The NCN results, shown in table 1, are based on 100 test runs carried out for each task. The number
of IUs kept after pruning was set to 32 and the maximum IU length was 3. The four tasks where NCN
particularly outperforms are Grandparent, Uncle, Adjacent To Red, and Two Children. Convergence
in δ-ILP (Evans and Grefenstette, 2018) highly depends on the weight initialisation and the system
sometimes fails to converge to the optimal hypothesis. The following subsections detail each of the
tasks along with the NCN model converted to rules, stating only the IUs with weight magnitude
greater than 0.01 and omitting the literal weights (W (1),1).

C.1 Predecessor

The task involves learning the predecessor/2 concept using the set of basic arithmetic facts of zero/1
and succ/2 relations. The number of positive and negative examples are 6 and 43 respectively. The
top rule is as following:

target(V1,V2)::3.91 :- succ(V2,V1)

C.2 Son

The task involves learning the son/2 concept in terms of family relations father/2, brother/2, and
sister/2. The number of positive and negative examples are 3 and 10 respectively. The top rule is as
following:

son(V1,V2)::3.23 :- brother(V1,V3), father(V2,V3)

C.3 Grandparent

The task involves learning the grandparent/2 concept using facts of mother/2 and father/2
relations. The number of positive and negative examples are 7 and 74 respectively. The top 4 rules
are as following:

grandparent(V1,V2)::3.05 :- father(V3,V2), mother(V1,V3)
grandparent(V1,V2)::3.05 :- father(V1,V3), father(V3,V2)
grandparent(V1,V2)::3.05 :- father(V1,V3), mother(V3,V2)
grandparent(V1,V2)::2.70 :- mother(V1,V3), mother(V3,V2)

C.4 Husband

The task involves learning the husband/2 concept using facts of father/2, daughter/2, and
brother/2 relation. The number of positive and negative examples are 2 and 142 respectively. The
top rule is as following:

8



target(V1,V2)::3.05 :- daughter(V3,V2), father(V1,V3)

C.5 Uncle

The task involves learning the uncle/2 concept using facts of family relations including father/2,
mother/2, and brother/2. The number of positive and negative examples are 3 and 61 respectively.
The top 2 rules are as following:

target(V1,V2)::3.05 :- brother(V1,V3), father(V3,V2)
target(V1,V2)::2.70 :- brother(V1,V3), mother(V3,V2)

C.6 Father

The task involves learning the father/2 concept using husband/2, mother/2, brother/2, and
aunt/2 relations. The number of positive and negative examples are 2 and 223 respectively. The top
rule is as following:

target(V1,V2)::3.05 :- husband(V1,V3), mother(V3,V2)

C.7 Undirected Edge

The task involves learning the unconnected_edge/2 concept for a graph that is represented by facts
of the edge/2 relation. The number of positive and negative examples are 5 and 11 respectively. The
top 2 rules are as following:

target(V1,V2)::3.36 :- edge(V1,V2)
target(V1,V2)::3.36 :- edge(V2,V1)

C.8 Adjacent To Red

In this task, the nodes of a graph are coloured either green or red. The objective is to learn the
concept adjacent_to_a_red_node/1. The background is composed of edge/2, colour/2, green/1,
and red/1 relations. The number of positive and negative examples are 2 and 3 respectively. Note:
the provided script for datasets by δ-ILP (Evans and Grefenstette, 2018) authors produces binary
example facts for the target predicate, even though it mentioned that the target fact is unary. This is
because representation in δ-ILP (Evans and Grefenstette, 2018) is strictly based on binary predicates.
Since NCN supports unary predicates, we convert the binary examples to unary facts. The top rule is
as following:

target(V1)::2.85 :- colour(V2,V3), edge(V1,V2), is_red(V3)

C.9 Two Children

The task involves learning the concept has_at_least_two_children/1. The background is defined
in terms of edge/2 and not equals (neq/2) relations. The number of positive and negative examples
are 2 and 3 respectively. Similar to the Adjacent To Red task, we convert the binary examples to
unary facts. The top 2 rules are as following:

target(V1)::1.45 :- edge(V1,V2), edge(V1,V3), neq(V3,V2)
target(V1)::1.40 :- edge(V1,V2), edge(V1,V3), neq(V2,V3)

D knowledge-base Completion Tasks

The facts of the target concept present in the training set are used as positive examples for the KBC
tasks. For each positive example, three corrupted facts are generated by randomly changing the first
argument, the second argument, and lastly, both of the arguments. We make sure that none of the
corrupted facts are present in either the training or the test set. The number of IUs kept after pruning
was set to 16, except for FB15k-237 where it was set to 10. The maximum IU length was 2, except
for UMLS (3) and Kinship (3), where the maximum IU length was 3.
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Particularly of interest was the result for UMLS (3) and Kinship (3) which shows significant improve-
ment as the maximum number of literals allowed in the body is increased, as opposed to Neural-LP
(Yang et al., 2017) where the performance decreases when increasing the number of body literals.
Table 6 shows the model learned for the causes concept in the UMLS dataset under two different
settings, converted to rules, for the purpose of comparison. We also test NCN over FB15k-237 to
evaluate the approach in terms of scalability. Due to time constraints only a single test was carried
out for Neural-LP (Yang et al., 2017) and NCN.

Table 6: Example model learned for the causes concept under two different IU length settings,
showing only the rules associated with the IUs of parameter magnitude greater than 0.01.

Max IU length = 3

causes(V1,V2)::2.05 :- result_of(V2,V3), uses(V3,V1)
causes(V1,V2)::1.01 :- analyzes(V3,V1), associated_with(V3,V2)
causes(V1,V2)::0.88 :- analyzes(V3,V1), diagnoses(V3,V2)
causes(V1,V2)::0.52 :- diagnoses(V3,V2), ingredient_of(V1,V4), uses(V3,V4)
causes(V1,V2)::0.42 :- ingredient_of(V1,V3), occurs_in(V2,V4), produces(V4,V3)
causes(V1,V2)::0.40 :- ingredient_of(V1,V3), occurs_in(V2,V4), uses(V4,V3)

Max IU length = 2

causes(V1,V2)::1.55 :- analyzes(V3,V1), associated_with(V3,V2)
causes(V1,V2)::1.40 :- analyzes(V3,V1), diagnoses(V3,V2)
causes(V1,V2)::1.18 :- associated_with(V3,V2), uses(V3,V1)
causes(V1,V2)::0.98 :- treats(V3,V2), uses(V3,V1)
causes(V1,V2)::0.22 :- associated_with(V3,V2), process_of(V3,V1)
causes(V1,V2)::0.19 :- isa(V3,V1), treats(V3,V2)

For IKBC tasks, we use the same NCN models learned for KBC tests. The evaluation is based on
partial closed world assumption (Galárraga et al., 2015). It is assumed that the facts not present in the
dataset are not true. This is also implicit in the aforementioned metrics (MRR and Hits@10). For
each test fact, all possible corruptions are generated by corrupting the second argument of the fact.
The confusion matrix is separately obtained for each concept in the test set, where true positives and
false negatives are the test facts that the model outputs as positive and negative respectively. False
positives are the corruptions of the test facts that the model outputs as positive.

For the purposes of evaluation, we make sure that the language bias is the same for both AMIE+ and
NCN, and use the default settings for AMIE+ (Galárraga et al., 2015). The learned rules are non-
recursive, safe, and can have a maximum of two body literals. Moreover, we only allow rules where
each variable in a literal appears at least in one other literal. For the UMLS and Kinship datasets,
while AMIE+ (Galárraga et al., 2015) achieves better sensitivity scores, it suffers significantly in terms
of precision and F1. The higher true positive rate and lower precision is due to AMIE+ (Galárraga
et al., 2015) learning more generic hypothesis. The number of rules learned by AMIE+ (Galárraga
et al., 2015) was larger than NCN for most of the datasets. The table 7 compares the hypothesis size
for each dataset.

Table 7: Hypothesis size comparision between NCN and AMIE+.

Dataset

System UMLS UMLS (3) Kinship Kinship (3) WN18 FB15k-237

NCN 736 736 400 400 288 2,370
AMIE+ 10,556 472,123 6,834 295,532 72 4,833

For the FB15k-237 dataset, NCN suffers significantly in terms of precision and F1. One possible
explanation could be low number of epochs in each structure learning iteration. For initial evaluation,
we used 100 and 400 epochs in the intermediate and final GD optimisation steps respectively. Looking
at the result for each predicate in the dataset, it can be observed that just a small number of predicates
are responsible for most of the false positive count. For example, 6 of the 237 relations together
account for about 1.74 million false positives, more than half of the total of approximately 3 million.
As part of the current work, in addition to increasing the number of epochs, incorporating additional
negative examples in the training set will be explored.
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