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Overview

Many real-world RL tasks require temporally extended behavior.
Such reward-worthy behavior requires the execution of a pattern of actions that yields reward only upon completion of the pattern.

Standard deep RL solution:

Use a recurrent neural network (RNN) — hidden state summarizes state-action history.
Disadvantage: takes large number of samples to train.

Standard KR-based solution:

Use a pre-determined abstraction of the state space to define reward-relevant features, realized via a labelling function.
Disadvantage: requires a priori domain knowledge.

Our solution:

Automatically learn reward-relevant features from the state-action history!
Use the learned features to accelerate learning.

In our experiments with non-Markovian goals, we outperform state-of-the-art RL based on RNNs.
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Left: A 5x5 gridworld where the agent must first reach the key and only
then arrive at the door to solve the task.

KR-based solution: augment the RL agent with an observation have keys.

Optimal behavior:
When have keys is false, move towards the key.
When have keys is true, move towards the door.

Note: with the have keys proposition, the environment becomes Markovian.

We consider non-Markovian goals: reward is 1 or 0 based on whether the
goal is achieved.

Method

Algorithm 1: AutRL
dfa← empty automata;
π ← uniform random policy;
traces← ∅ ;
while true do

sample traces← sample(π, N) ;
append traces with sample traces;
if sample traces inconsistent with dfa then

dfa← aut learn(traces);
end

π ← markov learn(sample traces × dfa);
end

Main idea:

Train a DFA to predict whether a state-action sequence receives
reward 0 or 1.

Augment the agent with the DFA state and use any standard
RL algorithm to learn policies which are non-Markovian in the
original problem.

If a learned DFA can predict this reward perfectly, then the
problem becomes completely Markovian

Alternate between DFA learning and Markovian learning, until a
consistency condition is met for the learned DFA.
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A DFA learned by AutRL for the example.

Details:

Recent advances in automata learning (Shvo et al, 2020) allow
us to efficiently learn small DFAs that are robust to noise.

In practice, the DFA need not perfectly classify the reward. For
example, it is enough to be able to partition the DFA states into
ones where have keys is true, and where have keys is false.

We prove AutRL optimally converges under mild
assumptions on the Markovian learning policy, exploratory
policy, and on the structure of the goal-based reward.

Experimental Evaluation
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Stochastic Gridworld

Legend: PPO + LSTM AutRL + Q-Learning (ours)

Figure: The results from the conducted experiments. The error bars are 95% confidence intervals over 30 runs.

Discussion

Analysis of Results:

AutRL is, at most, over an order of magnitude
more sample-efficient than Recurrent-PPO, to
95% confidence.

AutRL exhibited much more consistent and stable
learning than the Recurrent-PPO.

In practice, checking for high performance of Markov
learning given a DFA, instead of perfect reward
classification, yields better stability and sample
efficiency.

Limitations and Future Work:

This method does not perform well if the goal histories G do not
form a regular language in S×A (e.g. counting-related tasks).

We focus on non-Markovian reward, future work can consider
partial observability.

DFA learning method requires the state-action space to be
small and discrete: future work should focus on continuous
states and scalability.

We only support non-Markovian goals rather than general
reward functions.

Selected Related Work:

Prior works also attempt to learn reward structure, but
are sensitive to noise (e.g. Toro Icarte et al., 2019; Xu
et al., 2020).

(Gaon & Brafman, 2020) shares our high-level idea but
we leverage advances in automata learning and show
this can outperform standard state-of-the-art RL.
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