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Multimodal Question Answering

• Problem: answer free-form questions by reasoning
about presented images

• Dataset: GQA
• 113,018 images & 1.5M questions
• 1702 object classes

Question:
Is there any red object to the 
left of the small girl who is 
holding a hamburger?

Short Answer: Yes
Long Answer: Yes, there is a 
red tray
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Limitations
• LXMERT not really understands the question

• Mask out relationship words (e.g. “to the left of”) in the 
questions: 59.7% à 55.5% (less than 5% drop)[1]

• A “black-box” neural encoder without human readable 
justification

Our Main Baseline in this talk

LXMERT

LRTA: A More Explainable Approach

• Question: Is there any red object to the 
left of the small girl who is holding a 
hamburger?

• LRTA: Solving the problem step-by-step 
like humans
• (1) Look at the image

• (2) Read the question

• (3) Think (Multi-Step)
• (3.1) hamburger

• (3.2) small girl

• (3.3) tray

• (4) Answer
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Look: Scene Graph Generation

• Extended Facebook DETR: Object + Bounding Box + Attributes + Relationships
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Read: Semantic Parser Module
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Reasoning Instructions
(1) Select: hamburger
(2) Relate: girl, holding
(3) Filter size: small
(4) Relate: object, left
(5) Filter color: red
(6) Check Exist

Question
Is there any red object 
to the left of the small 
girl who is holding a 
hamburger?

Reason: Neural Execution Module

Scene Graph Traversal

Execution Step 1 Execution Step 2 …

Reasoning Instructions
(1) Select: hamburger
(2) Relate: girl, holding
(3) Filter size: small

…
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Traversal node: Girl
• History Vector
• Instruction Vector
• Relate: girl, holding

(1) Send to Each Node

(2) Each node queries its immediate 
neighbors and updates itself

(3) Aggregate all nodes
(4) Update history and output traversal node

Answer: Natural Language Generation
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LRTA Overview

Experiments
Model Long Acc Short Acc

Human - 89.30%

Bottom-up - 49.74%

MAC - 54.06%

LXMERT 28.00% 56.20%

LRTA 43.10% 54.48%

Table 1: End-to-end training 
experiment on testdev set

Model Long Acc Short Acc

LRTA trained w/ visual oracle

Evaluated w/o attributes 67.79% 78.21%

Evaluated w/o relations 67.95% 75.47%

Evaluated w/o attributes & relations 50.15% 61.15%

Evaluated w/ visual oracle 85.99% 93.10%

LRTA trained w/ reading oracle

Evaluated w/ reading oracle 55.45% 64.36%

Table 2: Validation study on valid set

Model Short Acc Drop (from → to)

VB & PRPN masked

LXMERT 19.43% (56.20% → 36.77%)

LRTA 26.20% (54.48% → 28.28%)

Attributes masked

LXMERT 9.41%   (56.20% → 46.79)

LRTA 21.03% (54.48% → 33.45)

Table 3: Perturbation analysis on testdev set. The 
larger drop the better

Conclusions
• Contributions

• We propose LRTA, an end-to-end trainable, modular VQA framework facilitating explain-ability 
and enhanced error analysis as compared to contemporary black-box approaches.

• We formulate VQA as a full answer generation problem to improve explainability and discourage 
superficial guess for answering the questions.

• Future works
• Visual understanding poses as a bottleneck from our validation study and more model 

architectures should be explored and compared.
• Scene graph data exhibit heavy long-tailed bias and an unbiased scene graph prediction needs to 

be explored, e.g. Tang et al 2020[1]
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