
LRTA: A Transparent Neural-Symbolic Reasoning
Framework with Modular Supervision

for Visual Question Answering

Weixin Liang
Stanford University

wxliang@stanford.edu

Feiyang Niu
Amazon Alexa AI
nfeiyan@amazon

Aishwarya Reganti
Amazon Alexa AI

areganti@amazon.com

Govind Thattai
Amazon Alexa AI

thattg@amazon.com

Gokhan Tur
Amazon Alexa AI

gokhatur@amazon.com

Abstract

The predominant approach to visual question answering (VQA) relies on encoding
the image and question with a “black-box” neural encoder and decoding a single
token as the answer like “yes” or “no”. Despite this approach’s strong quantitative
results, it struggles to come up with intuitive, human-readable forms of justification
for the prediction process. To address this insufficiency, we reformulate VQA as
a full answer generation task, which requires the model to justify its predictions
in natural language. We propose LRTA [Look, Read, Think, Answer], a trans-
parent neural-symbolic reasoning framework for visual question answering that
solves the problem step-by-step like humans and provides human-readable form
of justification at each step. Specifically, LRTA learns to first convert an image
into a scene graph and parse a question into multiple reasoning instructions. It
then executes the reasoning instructions one at a time by traversing the scene graph
using a recurrent neural-symbolic execution module. Finally, it generates a full
answer to the given question with natural language justifications. Our experiments
on GQA dataset show that LRTA outperforms the state-of-the-art model by a large
margin (43.1% v.s. 28.0%) on the full answer generation task. We also create a
perturbed GQA test set by removing linguistic cues (attributes and relations) in the
questions for analyzing whether a model is having a smart guess with superficial
data correlations. We show that LRTA makes a step towards truly understanding
the question while the state-of-the-art model tends to learn superficial correlations
from the training data.

1 Introduction

A long desired goal for AI systems is to play an important and collaborative role in our everyday
lives [29, 31]. Currently, the predominant approach to visual question answering (VQA) relies
on encoding the image and question with a black-box transformer encoder [36, 32]. These works
carry out complex computation behind the scenes but only yield a single token as prediction output
(e.g., “yes”, “no”). Consequently, they struggle to provide an intuitive and human readable form
of justification consistent with their predictions. In addition, recent study has further demonstrated
some unsettling behaviours of those models: they tend to ignore important question terms [33], look
at wrong image regions [10], or undesirably adhere to superficial or even potentially misleading
statistical associations [1].

4th Knowledge Representation and Reasoning Meets Machine Learning Workshop (KR2ML 2020), at NeurIPS.



To address this insufficiency, we reformulate VQA as a full answer generation task rather than a
classification one, i.e. a single token answer. The reformulated VQA task requires the model to
generate a full answer with natural language justification. We find that the state-of-the-art model
answers a significant portion of the questions correctly for the wrong reasons. To learn the correct
problem solving process, We propose LRTA (Look Read Think Answer), a transparent neural-
symbolic reasoning framework that solves the problem step-by-step mimicking humans. A human
would first (1) look at the image, (2) read the question, (3) think with multi-hop visual reasoning,
and finally (4) answer the question. Following this intuition, LRTA deploys four neural modules,
each mimicking one problem solving step that humans would take: A scene graph generation module
first converts an image into a scene graph; A semantic parsing module parses each question into
multiple reasoning instructions; A neural execution module interprets reason instructions one at a
time by traversing the scene graph in a recurrent manner and; A natural language generation module
generates a full answer containing natural language explanations. The four modules are connected
through hidden states rather than explicit outputs. Therefore, the whole framework can be trained
end-to-end, from pixels to answers. In addition, since LRTA also produces human-readable output
from individual modules during testing, we can easily locate the error by checking the modular output.
Our experiments on GQA dataset show that LRTA outperforms the state-of-the-art model by a large
margin (43.1% v.s. 28.0%) on the full answer generation task. Our perturbation analyses by removing
relation linguistic cues from questions confirm that LRTA makes a step towards truly understanding
the question rather than having a smart guess with superficial data correlations. We discuss related
work in Appendix A.

To summarize, the main contributions of our paper are three-fold: 1) We formulate VQA as a full
answer generation problem (instead of short answer classification) to improve explainability and
discourage superficial guess for answering the questions. 2) We propose LRTA, an end-to-end
trainable, modular VQA framework facilitating explainability and enhanced error analysis. 3) We
create a perturbed GQA test set that provides an efficient way to peak into a model’s reasoning
capability and validate our approach on the perturbed dataset. The dataset is available for future
research - https://github.com/Aishwarya-NR/LRTA_Perturbed_Dataset

2 LRTA: Look, Read, Think and Answer

CNN
Transformer

Encoder
Decoder

N Object Vectors

Question: Is there any red
object left of the girl that is

holding a hamburger?

Transformer
Encoder
Decoder

M Instruction Vectors

Instruction
Vector

Decoder

Reasoning Instructions
(1) Select: hamburger 
(2) Relate: girl, holding
(3) Relate: object, left
(4) Filter color: red

Step 1: Look - Scene Graph Generation

Step 2: Read - Semantic Parsing

Step 3: Think - Visual Reasoning RecurrentNeural Execution Engine

Yes, there is a red tray.

Natural Language Justification
Step 4: Answer -  
Full Answer Generation

Natural
Language
Generation

Scene Graph
Generation

coat

tray

girlmilk
shake

salad

left

left holding

wearing

lefton

onbehind

red, plastic

red

pink

burger

coat

burgertray

girlmilk
shake

salad

left

left holding

wearing

lefton

onbehind

red, plastic

red

pink

1

Execution Step 1

Instruction Vector #1 - Select: hamburger

coat

burgertray

girlmilk
shake

salad

left

left holding

wearing

lefton

onbehind

red, plastic

red

pink
2

Execution Step 2

...

Recurrent History of
Neural Execution

Engine

Instruction Vector #2 - Relate: girl, holding

Figure 1: LRTA’s four-step workflow (Look, Read, Think, Answer): (1)
Convert the image into a scene graph (2) Parse the question into multiple rea-
soning instructions (3) Executes each instruction step-by-step using a recurrent
neural execution engine (4) Generates the full answer with natural language
justification.

Look: Scene Graph Gen-
eration Given an image
I , its corresponding scene
graph represents the objects
in the image (e.g., girl,
hamburger) as nodes and
the objects’ pairwise rela-
tionships (e.g., holding) as
edges. The first step of
scene graph generation is
object detection. We use
DETR [7] as the object de-
tection backbone since it
removes the need for for
hand-designed components
like non-maximum suppres-
sion. DETR [7] feeds
the image feature from
ResNet50 [14] into a non-
autoregressive transformer
model, yielding an order-
less set of N object vectors
[o1,o2, . . . ,oN ]. Each ob-
ject vector represents one
detected object in the image.
Then, for each object vector,
DETR uses an object vector decoder (feed-forward network) to predict the corresponding object class

2

https://github.com/Aishwarya-NR/LRTA_Perturbed_Dataset


(e.g., girl), and the bounding box in a multi-task manner. Since the set prediction of N object vectors
is order-less, DETR calculates the set prediction loss by first computing an optimal matching between
predicted and ground truth objects, and then sum the loss from each object vector. N is fixed to 100
and DETR creates a special class label “no object”, to represent that the object vector does not
represent any object in the image. The object detection backbone learns object classes and bounding
boxes, but does not learn object attributes, and the objects’ pairwise relationships. We augment the
object vector decoder with an additional object attributes predictor. For each attribute meta-concept
(e.g., color), we create a classifier to predict the possible attribute values (e.g., red, pink). To predict
the relationships, we consider all N(N − 1) possible pairs of object vectors,[e1, e2, . . . , eN(N−1)].
The relation encoder transforms each object vector pair to an edge vector through feed-forward and
normalization layers as in (1). We then feed each edge vector to the relation decoder to classify its
relationship label. Both object attributes and inter-object relationships are supervised in a multi-
task manner. To handle the object vector pair that does not have any relationship, we use the “no
relation” relationship label. We construct the scene graph represented by N object vectors and
N(N − 1) edge vectors instead of the symbolic outputs, and pass it to downstream modules.

ei,j = LayerNorm(FeedForward(oi ⊕ oj)) (1)

Read: Semantic Parsing The semantic parser works as a “compiler” that translates the question
tokens (q1, q2, . . . , qQ) into an neural executable program, which consists of multiple instruction
vectors. We adopt a hierarchical sequence generation design: a transformer model [39] first parses
the question into a sequence of M instruction vectors, [i1, i2, . . . , iM ]. The ith instruction vector
will correspond exactly to the ith execution step in the neural execution engine. To enable human to
understand the semantics of the instruction vectors, we further translate each instruction vector to
human-readable text using a transformer-based instruction vector decoder. We pass the M instruction
vectors rather than the human-readable text to the neural execution module.

[i1, i2, . . . , iM ] = Transformer(q1, q2, . . . , qQ) (2)

Think: Visual Reasoning with Neural Execution Engine The neural execution engine works in
a recurrent manner: At the mth time step, the neural execution engine takes the mth instruction
vector (im) and outputs the scene graph traversal result. Similar to recurrent neural networks, a
history vector that summarizes the graph traversal states of all nodes in the current time-step would be
passed to the next time-step. The neural execution engine operates with graph neural network. Graph
neural network generalizes the convolution operator to graphs using the neighborhood aggregation
scheme [6, 42]. The key intuition is that each node aggregates feature vectors of its immediate
neighbors to compute its new feature vector as the input for the following neural layers. Specifically,
at mth time step given a node as the central node, we first obtain the feature vector of each neighbor
(fm

k ) through a feed-forward network with the following inputs: the object vector of the neighbor
(ok) in the scene graph, the edge vector between the neighbor node and the central node (ek,central)
in the scene graph, the (m− 1)th history vector (hm−1), and the mth instruction vector (im).

fm
k = FeedForward(ok ⊕ ek,central ⊕ hm−1 ⊕ im) (3)

We then average each neighbor’s feature vector as the context vector of the central node (cmcentral).

cmcentral =
1

K

K∑
k=1

fm
k (4)

Next, we perform node classification for the central node, where an “1” means that the corresponding
node should be traversed at the mth time step and “0” otherwise. The inputs of the node classifier
are: the object vector of the central node in the scene graph, the context vector of the central node,
and the mth instruction vector.

smcentral = Softmax(FeedForward(ocentral ⊕ cmcentral ⊕ im)) (5)

where smcentral is the classification confidence score of central node at mth time step. The node
classification results of all nodes constitute a bitmap as the scene graph traversal result. We calculate
the weighted average of all object vectors as the history vector (hm), where the weight is each node’s
classification confidence score.

hm =

N∑
i

smi · oi (6)

3



Answer: Full Answer Generation VQA is commonly formulated as a classification problem
where the model learns to answers with only one token (e.g., “yes” or “no”). We advocate to
formulate VQA as a natural language generation problem, where the model learns to answer the
question in a full sentence with justifications. To do this, LRTA deploys a transformer model that
takes in the neural execution’s history vectors from all time-steps, and generates the full answer
tokens (a1, a2, . . . , aA).

(a1, a2, . . . , aA) = Transformer(h1 ⊕ h2 ⊕ · · · ⊕ hM ) (7)

End-to-End Training: From Pixels to Answers We connect four modules through hidden states
rather than symbolic outputs [29]. Therefore, the whole framework could be trained in an end-to-end
manner, from pixels to answers. The training loss is simply the sum of losses from all four modules.
Each neural module receives supervision not only from the module’s own loss, but also from the
gradient signals back-propagated by downstream modules. We start from the pre-trained weights of
DETR for the object detection backbone and all other neural modules are randomly initialized.

3 Experiments

We evaluate LRTA on the GQA dataset [20], which contains 1.5M questions over 110K images. The
details of end-to-end experiment setup are reported in the Appendix.

Design Validation with Ground Truth Scene Graph Since LRTA deviates from the predominant
black-box encoder approach a lot, we first validate the design of LRTA by using a visual oracle for
step 1 (ground truth scene graphs). As shown in Table 2 in Appendix B, LRTA with visual oracle
achieves a surprisingly high accuracy on both short answers (93.1%) and full answers (85.99%)
on the validation set. This shows the great potential and expressivity of LRTA for visual question
answering. In addition, if we remove the attributes or the relations in the test data, the performance
drops a lot. This shows that scene graph generation beyond object detection is a crucial step and thus
we call for more attention to scene graphs for the visual question answering community.

End-to-End Training Experiments Next we train the model end-to-end, from pixels to answers.
As shown in Table 1 in Appendix B, LRTA significantly outperforms LXMERT in full answer
generation (43% v.s. 28%) and achieves comparable accuracy on short answers (54.48% v.s. 56.2%).
Next, we conduct perturbation study to show that the performance of LXMERT comes more from
superficial data correlations while LRTA makes a step towards truly understanding the question.

4 Conclusion

We present LRTA, a transparent neural-symbolic reasoning framework for visual question answering,
that incorporates [look, read, think and answer] steps to provide a human-readable form of justification
at each step. The modular design of our methodology enables the whole framework to be trainable
end-to-end. Our experiments on GQA dataset show that LRTA achieves high accuracy on full
answer generation task, outperforming the state-of-the-art LXMERT results by a noticeable 15%
absolute margin. In addition, LRTA performance drops significantly more than LXMERT, when
object attributes and relationships are masked, hence indicating that LRTA makes a step forward,
towards truly understanding the question, rather than making a smart guess based on superficial data
correlations. In the validation study, we have shown that when provided with an oracle scene graph,
LRTA is able to achieve a high accuracy on both short answers (93.1%) and full answers (85.99%),
nearing the theoretical bound 96% on short answers [2]. These observations indicate that better scene
graph prediction methods offer a great potential in further improving LRTA performance on both
short-answer and full-answer tasks.

Acknowledgement We would like to thank Robinson Piramuthu, Dilek Hakkani-Tur, Arindam
Mandal, Yanbang Wang and the anonymous reviewers for their insightful feedback and discussions
that have notably shaped this work.

4



References

[1] A. Agrawal, D. Batra, and D. Parikh. Analyzing the behavior of visual question answering
models. In EMNLP, pages 1955–1960. The Association for Computational Linguistics, 2016.

[2] S. Amizadeh, H. Palangi, O. Polozov, Y. Huang, and K. Koishida. Neuro-symbolic visual
reasoning: Disentangling "visual" from "reasoning". CoRR, abs/2006.11524, 2020.

[3] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. Bottom-up
and top-down attention for image captioning and visual question answering. In CVPR, pages
6077–6086. IEEE Computer Society, 2018.

[4] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to compose neural networks for
question answering. In HLT-NAACL, pages 1545–1554. The Association for Computational
Linguistics, 2016.

[5] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural module networks. In CVPR, pages
39–48. IEEE Computer Society, 2016.

[6] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre, H. F. Song, A. J. Ballard,
J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive
biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers. CoRR, abs/2005.12872, 2020.

[8] T. Chen, W. Yu, R. Chen, and L. Lin. Knowledge-embedded routing network for scene graph
generation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 6163–6171. Computer Vision Foundation /
IEEE, 2019.

[9] W. Chen, Z. Gan, L. Li, Y. Cheng, W. Wang, and J. Liu. Meta module network for compositional
visual reasoning. CoRR, abs/1910.03230, 2019.

[10] A. Das, H. Agrawal, L. Zitnick, D. Parikh, and D. Batra. Human attention in visual question
answering: Do humans and deep networks look at the same regions? In EMNLP, pages 932–937.
The Association for Computational Linguistics, 2016.

[11] Z. Feng, W. Liang, D. Tao, L. Sun, A. Zeng, and M. Song. Cu-net: Component unmixing
network for textile fiber identification. Int. J. Comput. Vis., 127(10):1443–1454, 2019.

[12] A. Ghorbani, A. Abid, and J. Y. Zou. Interpretation of neural networks is fragile. In AAAI,
pages 3681–3688. AAAI Press, 2019.

[13] J. Gu, S. R. Joty, J. Cai, H. Zhao, X. Yang, and G. Wang. Unpaired image captioning via scene
graph alignments. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 10322–10331. IEEE, 2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[15] M. Honnibal and I. Montani. spacy 2: Natural language understanding with bloom embeddings,
convolutional neural networks and incremental parsing. To appear, 2017.

[16] R. Hu, J. Andreas, T. Darrell, and K. Saenko. Explainable neural computation via stack neural
module networks. In ECCV (7), volume 11211 of Lecture Notes in Computer Science, pages
55–71. Springer, 2018.

[17] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko. Learning to reason: End-to-end
module networks for visual question answering. In ICCV, pages 804–813. IEEE Computer
Society, 2017.

[18] R. Hu, A. Rohrbach, T. Darrell, and K. Saenko. Language-conditioned graph networks for
relational reasoning. In ICCV, pages 10293–10302. IEEE, 2019.

[19] D. A. Hudson and C. D. Manning. Compositional attention networks for machine reasoning.
CoRR, abs/1803.03067, 2018.

5



[20] D. A. Hudson and C. D. Manning. GQA: A new dataset for real-world visual reasoning and
compositional question answering. In CVPR, pages 6700–6709. Computer Vision Foundation /
IEEE, 2019.

[21] D. A. Hudson and C. D. Manning. Learning by abstraction: The neural state machine. In
NeurIPS, pages 5901–5914, 2019.

[22] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, and R. B.
Girshick. Inferring and executing programs for visual reasoning. In ICCV, pages 3008–3017.
IEEE Computer Society, 2017.

[23] J. Johnson, R. Krishna, M. Stark, L. Li, D. A. Shamma, M. S. Bernstein, and F. Li. Image
retrieval using scene graphs. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3668–3678. IEEE Computer Society,
2015.

[24] B. Knyazev, H. de Vries, C. Cangea, G. W. Taylor, A. C. Courville, and E. Belilovsky. Graph
density-aware losses for novel compositions in scene graph generation. CoRR, abs/2005.08230,
2020.

[25] R. Koner, P. Sinhamahapatra, and V. Tresp. Relation transformer network. CoRR,
abs/2004.06193, 2020.

[26] L. Li, Z. Gan, Y. Cheng, and J. Liu. Relation-aware graph attention network for visual question
answering. In ICCV, pages 10312–10321. IEEE, 2019.

[27] Q. Li, J. Fu, D. Yu, T. Mei, and J. Luo. Tell-and-answer: Towards explainable visual ques-
tion answering using attributes and captions. In EMNLP, pages 1338–1346. Association for
Computational Linguistics, 2018.

[28] Q. Li, Q. Tao, S. R. Joty, J. Cai, and J. Luo. VQA-E: explaining, elaborating, and enhancing
your answers for visual questions. In ECCV (7), volume 11211 of Lecture Notes in Computer
Science, pages 570–586. Springer, 2018.

[29] W. Liang, Y. Tian, C. Chen, and Z. Yu. MOSS: end-to-end dialog system framework with
modular supervision. In AAAI, pages 8327–8335. AAAI Press, 2020.

[30] W. Liang, J. Zou, and Z. Yu. ALICE: active learning with contrastive natural language ex-
planations. In EMNLP (1), pages 4380–4391. Association for Computational Linguistics,
2020.

[31] W. Liang, J. Zou, and Z. Yu. Beyond user self-reported likert scale ratings: A comparison model
for automatic dialog evaluation. In ACL, pages 1363–1374. Association for Computational
Linguistics, 2020.

[32] J. Lu, V. Goswami, M. Rohrbach, D. Parikh, and S. Lee. 12-in-1: Multi-task vision and language
representation learning. In CVPR, pages 10434–10443. IEEE, 2020.

[33] P. K. Mudrakarta, A. Taly, M. Sundararajan, and K. Dhamdhere. Did the model understand the
question? In ACL (1), pages 1896–1906. Association for Computational Linguistics, 2018.

[34] J. Shi, H. Zhang, and J. Li. Explainable and explicit visual reasoning over scene graphs. In
CVPR, pages 8376–8384. Computer Vision Foundation / IEEE, 2019.

[35] A. Shin, Y. Ushiku, and T. Harada. The color of the cat is gray: 1 million full-sentences visual
question answering (FSVQA). CoRR, abs/1609.06657, 2016.

[36] H. Tan and M. Bansal. LXMERT: learning cross-modality encoder representations from
transformers. In EMNLP/IJCNLP (1), pages 5099–5110. Association for Computational
Linguistics, 2019.

[37] K. Tang, Y. Niu, J. Huang, J. Shi, and H. Zhang. Unbiased scene graph generation from biased
training. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 3713–3722. IEEE, 2020.

[38] D. Teney, L. Liu, and A. van den Hengel. Graph-structured representations for visual question
answering. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 3233–3241. IEEE Computer Society, 2017.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

6



[40] R. Vedantam, K. Desai, S. Lee, M. Rohrbach, D. Batra, and D. Parikh. Probabilistic neural sym-
bolic models for interpretable visual question answering. In ICML, volume 97 of Proceedings
of Machine Learning Research, pages 6428–6437. PMLR, 2019.

[41] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph generation by iterative message passing.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 3097–3106. IEEE Computer Society, 2017.

[42] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In ICLR.
OpenReview.net, 2019.

[43] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. Graph R-CNN for scene graph generation. In
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part I,
volume 11205 of Lecture Notes in Computer Science, pages 690–706. Springer, 2018.

[44] X. Yang, K. Tang, H. Zhang, and J. Cai. Auto-encoding scene graphs for image captioning. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 10685–10694. Computer Vision Foundation / IEEE, 2019.

[45] T. Yao, Y. Pan, Y. Li, and T. Mei. Exploring visual relationship for image captioning. In
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XIV,
volume 11218 of Lecture Notes in Computer Science, pages 711–727. Springer, 2018.

[46] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi. Neural motifs: Scene graph parsing with
global context. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 5831–5840. IEEE Computer Society,
2018.

[47] C. Zhang, W. Chao, and D. Xuan. An empirical study on leveraging scene graphs for visual
question answering. In 30th British Machine Vision Conference 2019, BMVC 2019, Cardiff,
UK, September 9-12, 2019, page 288. BMVA Press, 2019.

7



Appendix A: Related Work

Explainable VQA Existing black-box visual question answering models attempt to directly map
inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning
processes. To mitigate the black-box nature of these models, several model interpretation techniques
have been developed to improve model transparency and explainability [10, 12, 28, 27, 30, 11]. One
of the most popular approaches is attention map visualization, which highlights the important image
regions for answering the question. However, recent study shows that the visualized attention regions
correlate poorly with humans [10, 12]. Another line of research propose to generate natural language
justifications [28, 27] along with the short answer. Similar to the GQA dataset [20], the FSVQA
dataset [35] provides full answer annotations for VQA, but the full answer generation task remains
unexplored. To the best of our knowledge, LRTA is the first full answer generation framework for
GQA [20], and possibly for the visual quesiton answering task. However, this approach still do not
reveal the model’s step-by-step problem solving process. This approach makes a step towards more
explainable VQA models, but still does not reveal the internal problem solving process of the model.

Neural Module Networks Another active line of research on visual question answering explores
neural module networks (NMN) [5, 4, 17, 22, 16, 34, 40], which composes the model’s neural
architecture on the fly based on the given question. Instead of training a model with static neural
architecture, they hand-defined a set of small neural networks (i.e., neural modules), each dedicated
for a specific kind of logical operation. Given a question, NMN first uses a semantic parser to parse
the question into a series of logical operations (similar to our reasoning instructions). Then, given a
sereis of logical operations, NMN dynamically layouts the small neural networks. For example, to
answer “What color is the metal cube?”, NMN dynamically composes four modules: (1) a module
that finds things made of metal, (2) a module that localizes cubes, (3) a module that determines
the color of objects. However, NMN models are challenging to optimize by its nature. Therefore,
its success is mostly restricted to the synthetic CLEVR dataset [22] and how to extend NMN to
real-world datasets is still an open research problem [9]. Different from NMNs, our framework is
conceptually simple and could be easily trained in an end-to-end manner, from pixels to answers.

CNN
Transformer

Encoder
Decoder

N Object
Vectors

...

Decode Each Object Vector: Class, Bounding Box, Attributes
Object
Vector

Decoder coat: red

girl: small,
 smiling

... burger

Relation
Encoder

Relation
Decoder

wearing
holding

O(N2)
Object Pairs

O(N2) 
Edge Vectors

coat

tray

girlmilk
shake

salad

left

left holding

wearing

lefton

onbehind

red, plastic

red

pink

burger

Step 1: Look - Scene Graph Generation

Relation
Label

N Object Vectors
Graph Nodes:

O(N2) Edge Vectors
Graph Edges:

Graph Pruning

Figure 2: LRTA’s Scene Graph Generation Workflow.

Our work is also related to the sporadic attempts
in scene graph based VQA. Hudson et al. [21]
propose neural state machines that simulates the
computation of an automaton on probabilistic
scene graphs. [18, 26] models the interaction
between objects using graph attention mecha-
nism. Different from their work, our work is
end-to-end trainable, from pixels to answers,
and transparently provides the execution result
of each step.

Scene Graph Generation Scene graph gen-
eration (SGG) [41] is a visual detection task
that aims to predict objects and their relations
from an image. In recent years, it has drawn
increasing attentions that greatly advance the
interface of vision and language. By extracting
the concepts and contextual relations from pix-
els, scene graph provides an intuitive high-level
summary of a raw image and facilitates down-
stream reasoning tasks such as image caption-
ing [13, 44, 45], VQA [38, 20, 21, 47] or image
retrieval [23]. Previous works [41, 21, 46, 43, 8]
have predominantly relied on Faster R-CNN
based detectors that typically generate a poten-
tially large set of bounding box proposals whose contextualized representation is then fed through a
subsequent sequence to sequence network (e.g. LSTM [46] or Transformers [25]) to predict object
labels and their relations. A key disadvantage of those detectors is that they normally need many
hand-designed components like a non-maximum suppression procedure or anchor generation. In that

8



Model Full Acc Short Acc

Prior [20] - 28.93%
Human [20] - 89.30%
Bottom-up [3] - 49.74%
MAC [19] - 54.06%
LXMERT [36] 28.00% 56.20%
LRTA 43.10% 54.48%

Table 1: End-to-end training
experiment on testdev set

Model Full Acc Short Acc

LRTA trained w/ visual oracle
Evaluated w/o attributes 67.79% 78.21%
Evaluated w/o relations 67.95% 75.47%
Evaluated w/o attributes & relations 50.15% 61.15%
Evaluated w/ visual oracle 85.99% 93.10%

LRTA trained w/ reading oracle
Evaluated w/ reading oracle 55.45% 64.36%

Table 2: Validation study on valid set

Model Short Acc Drop (from → to)

VB & PRPN masked
LXMERT [36] 19.43% (56.20% → 36.77%)
LRTA 26.20% (54.48% → 28.28%)

Attributes masked
LXMERT [36] 9.41% (56.20% → 46.79%)
LRTA 21.03% (54.48% → 33.45%)

Table 3: Perturbation analysis on testdev set.

Model Short Acc Drop (from → to)

VB & PRPN masked
LXMERT [36] 4.40% (64.30% → 59.90%)
LRTA 16.67% (62.79% → 46.12%)

Attributes masked
LXMERT [36] 9.24% (64.30% → 55.06%)
LRTA 16.57% (62.79% → 46.22%)

Table 4: Perturbation analysis on valid set.

regard, we adopted DETR [7], a recently proposed method that streamlines the detection process
and makes our whole pipeline end-to-end trainable. Despite the growing research interest, SGG
remains as a challenging task largely due to the training bias, e.g. <human, on, beach> appears
more frequently than <human, lay on, beach>. As such, dummy models predicting solely based
on frequency is embarrassingly not far from the state-of-the-art as reported in [37, 24]. An unbiased
SGG method [37] was recently proposed that sheds some promising light on the data bias issue.
Thanks to the modular design of LRTA, we can easily incorporate such unbiased SGG into our
pipeline.

Appendix B: Experiments Results

Setup We evaluate LRTA on the GQA dataset. To the best of our knowledge, LRTA is the first full
answer generation model on GQA [20]. We use the standard dataset split. During training, we use
the ground truth for scene graphs, reasoning instructions, scene graph traversal results for each step,
and full answers. During testing, we only use images and questions. We add transformer decoder
to the state-of-the-art short answer model LXMERT [36] as a full answer generation baseline. We
report accuracy on both short answers and full answers for both LXMERT and LRTA. Full answers
are evaluated with string match accuracy since the full answers follows pre-defined templates. We
delay improving the metric as future work.

Perturbed GQA Dataset and Adversarial experiments In order to probe whether a model has
effectively leveraged linguistic cues, we design a perturbation study by systematically removing the
cues such as attributes and relationships from the questions and evaluate if the model’s performance
changes significantly. Specifically, the better a model understands the language cues, the more drop
we expect the model’s performance on the cues stripped questions. We use a comprehensive list of
attributes obtained by [9] and mask them using a predefined mask token. For effectively masking
relationships, we use Spacy POS-Tagger [15] and mask verbs (VB) and prepositions (PRPN) from the
question. We evaluate LXMERT and LRTA for short answer accuracy and report the results on the
testdev set and public valid set in Table 3 and Table 4, respectively. We can deduce from the results
that LRTA results drop more significantly than LXMERT in both masking scenarios on both sets.
On testdev set, we see that for relationships LRTA performance drops by 26.20% as compared to
19.43% drop in LXMERT, while for attributes, the margin is more significant at 21.03% and 9.41%
respectively, thus providing us a strong convergent evidence for our hypothesis that LRTA truly takes

9



a leap forward while trying to systematically understand the question and its components rather
than using peripheral correlations. On the valid set, we notice a similar pattern to the testdev set.
LRTA has a higher drop in performance when the attributes/relationships are masked as compared to
LXMERT [36].

10


	Introduction
	LRTA: Look, Read, Think and Answer
	Experiments
	Conclusion

