Latent Execution-Guided Reasoning for Multi-Hop
Question Answering on Knowledge Graphs

Hongyu Ren!, Hanjun Dai?, Bo Dai2, Xinyun Chen?, Jure Leskovec', Denny Zhou?
! Stanford University, {hyren, jure}@cs.stanford.edu
2 Google Research, Brain Team, {hadai ,bodai, dennyzhou}@google. com
3 UC Berkeley, xinyun.chen@berkeley.edu

Abstract

Answering complex questions on knowledge graphs (KGQA) is a challenging task.
It requires reasoning with both the input natural language questions as well as a
massive, incomplete heterogeneous KG. Prior methods obtain an abstract structured
query graph/tree from the input question and traverse the KG for answers following
the query tree. However, they inherently cannot deal with missing links in the KG.
Here we present LEGO, a Latent Execution-Guided reasOning framework with key
insights: execution-guided query synthesis and embedding-based query execution.
Our framework iteratively (1) synthesizes a reasoning action and grows the query
tree, e.g., extend one branch by a relation traversal or take intersections of multiple
branches; and (2) executes the new reasoning action in the latent embedding
space. The query synthesis adaptively infers the new interpretable reasoning action,
guided by the past execution of the query tree on the KG; and the embedding-based
query execution is naturally robust to incomplete KG. Experimental results on the
MetaQA benchmark demonstrates the effectiveness of our framework compared
with previous state of the art.

1 Introduction

Knowledge graphs (KGs) capture and encode knowledge/facts as triples, e.g., (Sacramento, Capital,
California). Prominent examples include Freebase [[1], Yago [2], NELL [3]], ConceptNet [4]. These
real-world KGs are massive, noisy and contain missing links. Answering complex, multi-hop natural
language questions on these incomplete KGs (KGQA) is a challenging and fundamental task in
artificial intelligence [5 16, [7, 18, 9L [10]. It requires learning a structured representation to bridge the
gap between natural language and entities/relations on a KG, as well as a robust multi-hop reasoning
algorithm to efficiently locate the answer entities under missing links and data.

Previous KGQA models [[L1} 12, [13} 14} [15] first synthesize a complete tree-structured query by
parsing the questions and then execute the query tree, which traverses the KG for answers. However,
their performance is hindered by three major challenges. The first challenge is that the synthesis
process and the execution process are separate and disjoint, leading to a large search space for query
synthesis, currently addressed by KG context-free beam search [11}[12]]. Another challenge is the
scale of KG. Real-world KGs often have millions of entities and multi-hop traversal on a KG leads
to an exponential growth in computation time and space. Finally, since KGs are often noisy and
incomplete, executing even the ground truth query tree may still not return the full answer set.

Recent knowledge graph embeddings [[16} 17, /18] have shown promise in handling missing links, i.e.,
one-hop reasoning, where they embed entities and relations in a vector space so that missing links
can be imputed. Another line of work [[19} 20} [21]] further proposes to embed complex logical queries
by designing neural logical operators, which allows for multi-hop reasoning and execution of logical
queries in the embedding space. This line of work enables a scalable and robust reasoning/execution
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Question: Who are Canadian Turing Award winners?
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Figure 1: LEGO answers a question by iteratively perform execution-guided query synthesis and
embedding-based query execution. LEGO is robust to incomplete KGs, whereas direct traversal will
not return all the answers given the incomplete KG (dashed lines denote missing links).

paradigm where answering a structured query is reduced to a K-nearest neighbor search of entities
that are close to the query embedding in the vector space. However, such execution relies on the
presence of structured logical formulas and how to generalize this line of work to take natural
language question as input remains unexplored.

Here we propose LEGO, a KGQA framework that synthesizes a query tree for a given question
and executes the structured query in a latent embedding space. Our framework consists of a query
synthesis module and a KG embedding module, which we build upon Query2box (Q2B) [20]. In
Q2B, a query is represented as a hyper-rectangle (box) in the Euclidean space. The key insight
of reasoning in our framework is that we iteratively synthesize the query tree and execute it in
the embedding space, and the two processes are mutually dependent, i.e., execution-guided query
synthesis as well as embedding-based query execution. Concretely, given a question, we start with the
topic entities (initial query tree) and the entity embeddings (initial query embedding). At each step,
the synthesis module infers the next reasoning action based on the question embedding (obtained
by pretrained language models) as well as the current query embedding; then the KG embedding
module executes this new reasoning action in the embedding space and updates the query embedding
as well as the query tree accordingly. Our framework naturally addresses the three challenges, where
the synthesis step is guided by the execution/embedding of the current query tree; it is scalable, with
linear computation complexity with respect to the size of the query tree, as well as robust against
missing edges in a KG.

As an example shown in Figure [T} if we aim to answer the question “Who are Canadian Turing
Award winners?”, we start with the topic entities {“Canada”, “Turing Award”} and initialize the
query embedding with the embedding of the topic entities. The query synthesis module will take as
input the question embedding as well as the query embedding, and infer the reasoning action, e.g.,
pick branch “Turing Award” and traverse by relation “Win”. Then the KG embedding module will
update the embedding of the first branch by performing relation projection in the embedding space
using Q2B. The process is iteratively executed until the query synthesis module outputs ‘“Terminate”,
marking the end of the reasoning process. Finally, the answers are those enclosed in the final box
embedding of the query.

We evaluate LEGO on the MetaQA benchmark [22], and we demonstrate the effectiveness and
scalability of our method in answering questions on a massive, incomplete KG. The framework also
achieves explainability and interpretability by providing a query tree, representing the reasoning
process.



2 Preliminaries

A knowledge graph (KG) G consists of a set of entities V and a set of relations R. Each relation
r € R is abinary function r : V x V — {True,False} that indicates (directed) edges of the relation
r between pairs of entities. Given a question ¢, we aim to extract its answers by reasoning on G. We
assume that the topic entities of the question, e.g., “Canada” and “Turing Award” in Figure[I] are
given. For each question ¢, there exists an underlying query tree corresponding to it, where the leaves
are the topic entities, the root represents the answer, and each edge belongs to a relation traversal or a
logical operation, e.g., conjunction. We emphasize that in our task, we only have access to a training
dataset of (question, answer) pairs without knowledge of the ground truth query tree.

3 Framework

Our framework consists of a knowledge embedding module and a query synthesis module, which
perform embedding-based execution and execution-guided synthesis respectively. Given an input
question ¢ and its topic entities [e1, . .., e,], we use a pretrained language model [23]] to obtain the
representation q, and our framework adopts a bottom-up strategy that synthesizes the query tree from
the topic entities (leaves in the tree).

3.1 Knowledge Embedding Module

We build upon the Query2box (Q2B) model [20], which embeds a query into a hyper-rectangle (box)
in the Euclidean space. Q2B represents each entity e as a point (box with zero offset), and provides
two logical operators P and Z to perform relation projection/traversal and box intersection in the
embedding space respectively. See Figure[T]and [20] for more details.

The goal of the knowledge embedding module is to execute a reasoning action given the current
query embedding in a vector space. Given a question g and the box embedding of its query tree
ge = [bt, ..., bY] at step ¢ where b¥ represents the embedding of branch b! of the query tree, the
knowledge embedding module takes as input a reasoning action, which is the output of the query
synthesis module (detailed in Sec. [3.2)). Valid reasoning action includes: (1) relation traversal 7 of one
branch b;, we perform one relation projection and update the query embedding: bit+1 = P (b, r);
(2) conjunction of multiple branches B C {b;}" ;, we use the intersection operator Z, merges all the
branches in B, and replace it with the output Z(B); (3) termination of the process.

3.2 Query Synthesis Module

Branch(es) Selection. Here we introduce how we model step-

wise query synthesis. Given a question ¢ and the box embedding Embedding Incomplete KG
of its query tree g¢ = [b%,...,b%] at step t, the goal of query Nobel, Canada o220
synthesis module is to infer a reasoning action, which first re- Oban:':, 0Sa0m o~Capial
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sents termination (note only when the query tree has one branch Figure 2: We prune the search
will the model select &, otherwise @ is masked); if only one branch Space for relation prediction.
is chosen, we perform traversal of a certain relation, which the mod-

ule will further infer; if multiple branches are chosen, we take conjunction over the chosen branches.
Since each element of pset, is a set, we design D(-) with an order-invariant DeepSets architecture
[24]] to extract the representation. For each B € pset,, we obtain its representation with D(B).
Then we score each set with a final scoring network, which also takes the question embedding q as
input: scoreg o S(D(B), q). See Appendix [A]for design choice of D(-) and S(-, -).

Relation Prediction. When we only select a single branch B € [{b%}, ..., {bt }], we further predict
a relation for this branch to traverse (in the embedding space). We use an additional network for
relation inference: R(D(B), q), which outputs a distribution over all the relations R on the KG.
Besides, we design heuristics to reduce the number of valid relations to predict at each step. For
example, if the selected branch is “[Obama, [Born]]”, then we know the relation we further predict

'Nearly all natural language questions have less than 4 branches/topic entities, hence it is tractable.



should be an attribute for countries. In this case, we prune the relation sets R by only predicting
from the attributes of entities close to the embedding of the selected branch. As shown in Figure 2}
when predicting the next relation for “[Obama, [Born]]”, we find “US” and “Canada” are close to the
branch embedding (the brown box), then the relation to traverse will be a union of the attributes of
“US” and “Canada”: {“Anthem”, “Capital”}, while we ignore “Winner”.

3.3 Iterative Query Synthesis and Question Answering

Inference. Given a question, we start from its topic entities, iteratively synthesize the query tree and
execute the query tree in the embedding space via the two modules. At each step, we choose the
action with the maximum probability. After the synthesis is terminated, we take the embedding of
the final query treeE] and rank all the entities by the distance between the entity and the query tree in
the vector space. See Appendix [C|for details of distance function and Appendix [D]for complexity
analysis. The score of a query tree for a given question is the average Hits@1 of the answers.

Training. During training, we first pretrain the knowledge embedding module by sampling (query
tree, answer) pairs from the given KG, so that we can have a nice initialization for the knowledge
embedding module. See Appendix [B]for details. After pretraining, we train the whole framework
using (training question, answer) pairs. We keep a replay buffer for each training question and search
query trees online for each question. The replay buffer stores the top-3 ranking query trees and the
traces for a given question. We directly optimize a standard supervised loss for the two modules.
Although the replay buffer may contain spurious queries/programs, the optimization follows the
insights that neural networks will fit the correct label more easily [25].

4 Experiments and Discussions

Dataset. We evaluate LEGO on MetaQA [22], which is a large-scale multi-hop KGQA benchmark
dataset with more than 400k questions. The questions in MetaQA span from 1-hop to 3-hop reasoning
steps, and can be answered on a given KG. In order to evaluate the robustness against an incomplete
KG, following prior work [3]], we use the same incomplete KG with only 50% edges.

Baseline. We compare with two state-of-the-art methods: (1) Pullnet [5], which iteratively retrieves a
subgraph from the KG starting from the topic entities and obtains answers by ranking entities on the
subgraph by graph neural networks; (2) EmbedKGQA [6], which learns a score function between the
question embeddings (from Bert [23]]) and entity embeddings (from ComplEx [18], a KG embedding
method). For sanity check, we also execute the ground truth query tree by (3) traversing on the
incomplete KG or (4) using the knowledge embedding (KE) module. More details can be found in
the Appendix [E]

Hits@1 I-hop 2-hop 3-hop | All
Traverse w/ ground truth query tree | 63.3 45.8 453 | 51.5
KE w/ ground truth query tree 70.8 62.1 66.4 | 66.6
Pullnet [5]] 65.1 52.1 59.7 | 59.2
EmbedKGQA™ [6] 70.6 543 535 | 60.2
LEGO 69.3 578 63.8 | 63.8

Table 1: Hits@1 results of MetaQA on 50% KG. *We rerun EmbedKGQA to guarantee that baselines and
ours use the exact same incomplete KG.

Results. We evaluate the accuracy using the Hits@1 metrics. As shown in Table|l} our method
achieves comparable results with EmbedKGQA on single-hop questions while outperforms both
Pullnet and EmbedKGQA by at least 8% relative Hits@ 1, demonstrating the effectiveness of LEGO
in modeling the reasoning step of multi-hop questions. When given the ground truth query tree, we
could directly use our KE module to embed it, which achieves the best result.

Overall, our experiment demonstrates that our framework outperforms previous methods in answering
multi-hop questions. And we plan to evaluate on more complex KGQA datasets including Com-
plexWebQuestions [26]], and further consider comparative or superlative constraints in query tree
synthesis for questions such as “Who are the latest Canadian Turing Award winners”.

2We guarantee that only when the query tree g has a single branch can it select termination.
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Appendix

A Design Choice of the Query Synthesis Module

Here we discuss the details of the architecture design of the D(-) and S(-, -) networks in the query
synthesis module. Since D takes a set of branches B € [@, {b1},...,{b1,b2},...,{b1,...,bn}]
as input, we adopt an order-invariant DeepSets architecture [24], where we first use a 2-layer MLP to
obtain the initial representation for each branch in the set and then use max-pooling, before we use
another 2-layer MLP to obtain the final representation for the set of branches. For &, we manually set
D(@) = 0. For S, it aims to score a set of branches conditioned on the input question, so we directly
concatenate the set representation obtained by D with the Bert embedding q of the question. After
we score all branches in the powerset using D and S, we normalize it with softmax.

B Pretraining Details

Given a KG, we follow the practices of Query2box [20]

and synthesize query trees of different structures. As

shown in Figure [3| given a query structure, we need to -0 0-0-0 @-0-0~0 go %D
instantiate it for a query tree, where essentially we need to ) )
ground the blue nodes (topic entities) and all the edges in Ip 2p 3p 2 3
the query structure. For instantiation, we adopt a top-down
strategy, where we first sample a random node on the KG
and treat this node as the green node and iteratively ground
the edges by sampling the neighboring edges of the green
node. The process is iteratively executed until we have
instantiated all the blue nodes. Then we traverse the KG using the query tree for answers, and add
this new (query tree, answer) pair to our pretraining dataset.

Figure 3: The query structures on which
we instantiate grounded queries and pre-
train the knowledge embedding module.

C Distance Function

Given the final query tree with a single branch g = [b], we define the distance between b and an
entity embedding v on KG using the box distance as in Query2box [20]]. Here b is a box with center
and offset, and v is a single point in the embedding space.

diStbox (V; ) = diStoutside(V; b) +a- diStinside (V; b)v
diStoutside(V; ) = ”MaX(V - bmam 0) + MaX(bmin -V, O) ||17
distinside(V; b) = ||Cen(b) — Min(bmax, Max(bmin, v))||1-

where by, = Cen(b) + Off(b) € R?, b,,;, = Cen(b) — Off(b) € R and 0 < o < 1 is a fixed
scalar and we used 0.02 in our experiments.

b
b

Train Dev Test
1-hop | 96,106 9,992 9,947
2-hop | 118,980 14,872 14,872
3-hop | 114,196 14,274 14,274
Table 2: Statistics of MetaQA

D Complexity Analysis

Given a KG G, with |V| number of entities and the maximum degree A(G), and a k-hop question, we
list below the worst case asymptotic complexity of traversing G following the structured query as well
as embedding the structured query. For traversal, the complexity is min(O(A(G)*), O(k|V|?)) since
they need to track and model all the intermediate entities; while the complexity of embedding-based
methods is O(k + [V|), linear with respect to the number of hops and the number of entities on G.



E Experimental Details

We experimented on MetaQA [22]], the statistics of the dataset can be found in Table@

For all the baselines and our method, we use the same pretrained case-insensitive 768 dimensional
Bert embedding (without finetuning) [23] to obtain the question representation for fair comparison.
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