
Interpretable Sequence Classification
via Discrete Optimization (Abridged Report)

Maayan Shvo†, Andrew C. Li, Rodrigo Toro Icarte, Sheila A. McIlraith†
University of Toronto & Vector Institute for Artificial Intelligence, Toronto, Canada

†Schwartz Reisman Institute for Technology and Society, Toronto, Canada
{maayanshvo, andrewli, rntoro, sheila}@cs.toronto.edu

Abstract

Sequence classification is the task of predicting a class label given a sequence
of observations. In many applications such as healthcare monitoring or intrusion
detection, early classification is crucial to prompt intervention. In this work,
we learn sequence classifiers that favour early classification from an evolving
observation trace. While many state-of-the-art sequence classifiers are neural
networks, and in particular LSTMs, our classifiers take the form of finite state
automata and are learned via discrete optimization. Our automata-based classifiers
are interpretable—supporting explanation, counterfactual reasoning, and human-in-
the-loop modification—and have strong empirical performance. Experiments over
a suite of goal recognition and behaviour classification datasets show our learned
automata-based classifiers to have comparable test performance to LSTM-based
classifiers, with the added advantage of being interpretable.
The unabridged paper appears here: [28].

1 Introduction

Sequence classification—the task of predicting a class label given a sequence of observations—has a
myriad of applications including biological sequence classification (e.g., [6]), document classification
(e.g., [26]), and intrusion detection (e.g., [19]). In many settings, early classification is crucial to
timely intervention. For example, in hospital neonatal intensive care units, early diagnosis of infants
with sepsis (based on the classification of sequence data) can be life-saving [11].

Neural networks such as LSTMs [14], learned via gradient descent, are natural and powerful se-
quence classifiers (e.g., [34, 16]), but the rationale for classification can be difficult for a human to
discern. This is problematic in many domains, where machine decision-making requires a degree of
accountability in the form of verifiable guarantees and explanation for decisions [7].

In this work, we use discrete optimization to learn binary classifiers in the form of finite state automata
that favour early classification. To classify a sequence of observations, we then employ Bayesian
inference to produce a posterior probability distribution over the set of class labels. Importantly,
our automata-based classifiers, by virtue of their connection to formal language theory, are both
generators and recognizers of the pattern language that describes each behavior or sequence class.
We leverage this property in support of a variety of interpretability services, including explanation,
counterfactual reasoning, verification, and human modification.

Previous work on learning automata from data has focused on learning minimum-sized automata
that perfectly classify the training data (e.g., [10, 1, 23, 32, 2, 9, 29]). Nonetheless, such approaches
learn large, overfitted models in noisy domains that generalize poorly to unseen data. We propose
novel forms of regularization to improve robustness to noise and introduce an efficient mixed integer
linear programming model to learn these automata-based classifiers. Furthermore, to the best of

4th Knowledge Representation and Reasoning Meets Machine Learning Workshop (KR2ML 2020), at NeurIPS.

A

H2

B

H1 H3

♀

K

♂

E q0 q3

q2

q1o/w always

always o/w

♀ or ♂

K

H2 or H3

H1 or H2

A or B

Figure 1: Left - Goal recognition environment where the possible goals of the agent are going to an
office (A or B), leaving the building (E), going to the restroom (♀ or ♂), or getting coffee (K). Right
- a DFA "get coffee" classifier, learned from data, that detects whether or not the agent is trying to
reach the goal K. A decision is provided after each new observation based on the current state: yes
for the blue accepting state, and no for the red, non-accepting states. “o/w" (otherwise) stands for all
symbols that do not appear on outgoing edges from a state. “always" stands for all symbols.

our knowledge, this is the first work that proposes automata for early classification. Experiments
on a collection of synthetic and real-world goal recognition and behaviour classification problems
demonstrate that our learned classifiers are robust to noisy sequence data, are well-suited to early
prediction, and achieve comparable performance to an LSTM, with the added advantage of being
interpretable.

2 Background and Running Example

We consider the problem of classifying noisy sequences of symbolic data where early classification
may be favoured. Given a trace τ = (σ1, σ2, . . . , σn), σi ∈ Σ, where Σ is a finite set of symbols, and
C is a set of class labels, sequence classification is the task of predicting the class label c ∈ C that
corresponds to τ . We propose to use Deterministic Finite Automata as sequence classifiers.

A Deterministic Finite Automaton (DFA) is a tupleM = 〈Q, q0,Σ, δ, F 〉, where Q is a finite set
of states, q0 ∈ Q is the initial state, Σ is a finite set of symbols, δ : Q × Σ → Q is the state-
transition function, and F ⊆ Q is a set of accepting states. Given a sequence of input symbols
τ = (σ1, σ2, . . . , σn), σi ∈ Σ, a DFAM = 〈Q, q0,Σ, δ, F 〉 transitions through the sequence of
states s0, s1, . . . , sn where s0 = q0, si = δ(qi−1, σi) for all 1 ≤ i ≤ n. M accepts τ if sn ∈ F ,
otherwise,M rejects τ .

Example 2.1 (The office domain) Consider the environment shown in Figure 1. We observe an
agent that starts at one of A, B, or E with the goal of reaching one of the other coloured regions,
C = {A,B,E,K,♀,♂}, using only the hallways H1, H2, and H3. The agent always takes the
shortest Manhattan distance path to the goal, choosing uniformly at random if multiple shortest paths
exist. For example, an agent starting at B with goal K will pursue paths (B, H2, H1 K) and (B, H1,
K). We wish to predict the agent’s goal as early as possible, given a sequence of observed locations.

Figure 1 depicts a learned binary DFA "get coffee" classifier. The DFA predicts whether the agent
would achieve the K goal by keeping track of the agent’s locations over time. Its input symbols are
Σ = {A, B, H1, H2, H3, E, ♀, ♂, K } and the only accepting state is q2 ∈ F . A decision is provided
after each incoming observation based on the current state: yes for the blue accepting state, and no
for red, non-accepting states. For example, on the trace (B, H2, H1, K) the DFA would transition
through the states (q0, q3, q0, q2), predicting that the goal is not K after the first three observations,
then predicting the goal is K after the fourth observation.

3 Learning DFAs for Sequence Classification

Given a set of data traces and corresponding class labels {(τ1, c1), . . . , (τN , cN)}, we train a separate
DFAMc for each label c ∈ C to recognize traces with label c, in a “one-vs-rest" fashion. We start by
representing the training set as a Prefix Tree (PT) [5], a common preprocessing step in the automata
learning literature [9]. Intuitively, a PT is a tree with every training trace as a branch where each
node represents a prefix of some training trace. We label each PT node with the number of positive
n+ and negative n− traces that start with the node’s prefix. Positive (resp. negative) refers to traces
belonging to (resp. not belonging to) target class c.

2

We then construct a Mixed Integer Linear Programming (MILP) model based on this PT to learn a
DFA (see the Appendix § A.2 or [28] for details). The maximum number of DFA states is pre-specified
with half the states assigned as accepting states and the other half as rejecting states. The main idea
is to assign the unique DFA state q reached by each node n in the PT (representing a sequence of
observations) using a binary decision variable xnq (equalling 1 if and only if node n is assigned to
DFA state q). If q is an accepting state (resp. rejecting state), the number of misclassifications is
n− (resp. n+) and our model searches for a feasible DFA while minimizing the total number of
misclassifications. To reduce overfitting, we penalize the number of (non-self-loop) DFA transitions.
Additionally, we designate one accepting state and one non-accepting state of the DFA as absorbing
states which can only self-transition. These states prevent the classifier from changing decisions once
reached. Imposing transition penalties and rewarding nodes for reaching absorbing states are novel
regularizers for learning automata and are crucial for generalization.

In order to classify a trace τ when multiple classes are possible, the collective decisions of the DFAs
are used to infer a posterior probability distribution over C. A detailed account of our learning
approach can be found in the Appendix § A.

4 Classifier Interpretability

An important property of our learned classifiers is that they are interpretable insofar as that the
rationale leading to a classification is captured explicitly in the structure of the DFA. DFAs can be
queried and manipulated to provide a set of interpretability services including explanation, verification
of classifier properties, and (human) modification as elaborated upon in [28]. Here we discuss how
explanations may be generated for the classification of some trace and refer the reader to the Appendix
for further discussion of the interpretability services afforded by our learned classifiers.

Explanation An important service in support of interpretability is explanation. In the context of
classification, given classifier M and trace τ , we wish to query M, seeking explanation for the
classification of τ . In cases where a classifier does not return a positive classification for a trace, a
useful explanation can take the form of a so-called counterfactual explanation (e.g., [21]).

Let α and β be strings over Σ. The edit distance between α and β, d(α, β), is equal to the minimum
number of edit operations required to transform α to β. LetM be a DFA classifier that accepts the
regular language L defined over Σ and let τ be some string over Σ. A counterfactual explanation
for τ is the sequence of edit operations transforming τ to a string τ ′ = arg minω∈L(d(τ, ω)). Given
the DFA depicted in Figure 1 and a trace τ = (A, H2, H1, ♂), a possible counterfactual explanation
is the edit operation REPLACE ♂ WITH K which transforms (A, H2, H1, ♂) to (A, H2, H1, K). This
explanation can then be transformed into a natural language sentence: “The binary classifier would
have accepted the trace had K been observed instead of ♂". A simple approach that generates such
natural language sentences from counterfactual explanations can be found in the Appendix § B.1.

5 Experimental Evaluation

In this section we describe the results of an evaluation of our approach, Discrete Optimization
for Interpretable Sequence Classification (DISC), on a suite of goal recognition and behaviour
classification domains. DISC is the implementation of the MILP model and Bayesian inference
method overviewed in Section 3. We compare against LSTM [14], a state-of-the-art neural network
architecture for sequence classification; Hidden Markov Model (HMM), a probabilistic generative
model which has been extensively applied to sequence tasks [18, 30]; n-gram [8] for n = 1, 2, which
perform inference under the simplifying assumption that each observation only depends on the last
n − 1 observations; and a DFA-learning approach (DFA-FT) which maximizes training accuracy
(minimizing the number of DFA states only as a secondary objective), representative of existing work
in learning DFAs.

Experimental Setup Performance is measured as follows. Cumulative convergence accuracy
(CCA) at time t is defined as the percentage of traces τ that are correctly classified given min(t, |τ |)
observations. Percentage convergence accuracy (PCA) at X% is defined as the percentage of traces τ
that are correctly classified given the first X% of observations from τ . All results are averaged over
30 runs, unless otherwise specified.

3

1 2 4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

StarCraft

2 8 32 128

MIT-AR

2 8 32 128 512

Crystal Island

4 32 256

BatteryLow

Number of observations

DISC (ours) DFA-FT LSTM HMM One-gram Two-gram

Figure 2: Test accuracy of DISC and all baselines as a function of earliness (number of observations
seen so far) on one synthetic dataset (left) and three real-world datasets (three right). We report
Cumulative Convergence Accuracy up to the maximum length of a trace. Error bars correspond to a
90% confidence interval. Further results appear in the Appendix § C.

We considered three goal recognition domains: Crystal Island [12], a narrative-based game where
players solve a science mystery; ALFRED [27], a virtual-home environment where an agent can
interact with various household items and perform a myriad of tasks; and MIT Activity Recognition
(MIT-AR) [31], comprised of noisy, real-world sensor data with labelled activities in a home setting.
Given a trace the classifier attempts to predict the goal the agent is pursuing.

Experiments for behaviour classification were conducted on a dataset comprising replays of different
types of scripted agents in the real-time strategy game StarCraft [15], and on two real-world malware
datasets comprising ‘actions’ taken by different malware applications in response to various Android
system events (BootCompleted and BatteryLow) [3]. The behaviour classification task involves
predicting the type of StarCraft agent and malware family, respectively, that generated a given
behaviour trace.

Results Detailed results for StarCraft, MIT-AR, Crystal Island, and BatteryLow are shown in Figure
2 while a summary of results from all domains (including examples of DFA classifiers learned from
the data) is provided in the Appendix and in [28]. DISC generally outperformed n-gram, HMM,
and DFA-FT, achieving near-LSTM performance on most domains. LSTM displayed an advantage
over DISC on datasets with long traces. n-gram models excelled in some low-data settings (see
MIT-AR) but perform poorly overall as they fail to model long-term dependencies. Finally, we
conducted an experiment to assess how well DISC performed with respect to “early classification".
DISC demonstrated strong performance in each domain - superior to non-LSTM methods and in line
with LSTM performance (the results are presented in the Appendix § C.4).

6 Concluding Remarks

The classification of (noisy) symbolic time-series data represents a significant class of real-world
problems that includes malware detection, transaction auditing, fraud detection, and a diversity of
goal and behavior recognition tasks. The ability to interpret and troubleshoot these models is critical
in most real-world settings. In this paper we proposed a method to address this class of problems by
combining the learning of DFA sequence classifiers via MILP with Bayesian inference. Our approach
introduced novel automata-learning techniques crucial to addressing regularization, efficiency, and
early classification. Critically, the resulting DFA classifiers offer a set of interpretability services that
include explanation, counterfactual reasoning, verification of properties, and human modification.
Our implemented system, DISC, achieves similar performance to LSTMs and superior performance
to HMMs and n-grams on a set of synthetic and real-world datasets, with the important advantage of
being interpretable.

4

Acknowledgments and Disclosure of Funding

We gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of
Canada (NSERC), the Canada CIFAR AI Chairs Program, and Microsoft Research. The third author
also acknowledges funding from ANID (Becas Chile). Resources used in preparing this research
were provided, in part, by the Province of Ontario, the Government of Canada through CIFAR,
and companies sponsoring the Vector Institute for Artificial Intelligence (www.vectorinstitute.
ai/partners). Finally, we thank the Schwartz Reisman Institute for Technology and Society for
providing a rich multi-disciplinary research environment.

References
[1] D. Angluin. Learning regular sets from queries and counterexamples. Information and compu-

tation, 75(2):87–106, 1987.

[2] D. Angluin, S. Eisenstat, and D. Fisman. Learning regular languages via alternating automata.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[3] M. L. Bernardi, M. Cimitile, D. Distante, F. Martinelli, and F. Mercaldo. Dynamic malware
detection and phylogeny analysis using process mining. International Journal of Information
Security, 18(3):257–284, 2019.

[4] A. Camacho and S. A. McIlraith. Learning interpretable models expressed in linear temporal
logic. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 29, pages 621–630, 2019.

[5] C. De la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

[6] M. Deshpande and G. Karypis. Evaluation of techniques for classifying biological sequences. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 417–431. Springer,
2002.

[7] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608, 2017.

[8] T. Dunning. Statistical identification of language. Computing Research Laboratory, New
Mexico State University Las Cruces, NM, USA, 1994.

[9] G. Giantamidis and S. Tripakis. Learning moore machines from input-output traces. In
International Symposium on Formal Methods, pages 291–309. Springer, 2016.

[10] E. M. Gold. Language identification in the limit. Information and control, 10(5):447–474, 1967.

[11] M. P. Griffin and J. R. Moorman. Toward the early diagnosis of neonatal sepsis and sepsis-like
illness using novel heart rate analysis. Pediatrics, 107(1):97–104, 2001.

[12] E. Y. Ha, J. P. Rowe, B. W. Mott, and J. C. Lester. Goal recognition with markov logic
networks for player-adaptive games. In Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2011.

[13] H. Harman and P. Simoens. Action graphs for proactive robot assistance in smart environments.
JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS, 12(2):79–99,
2020.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[15] P. Kantharaju, S. Ontañón, and C. W. Geib. Scaling up CCG-Based Plan Recognition via
Monte-Carlo Tree Search. In Proc. of the IEEE Conference on Games 2019, 2019.

[16] F. Karim, S. Majumdar, H. Darabi, and S. Harford. Multivariate lstm-fcns for time series
classification. Neural Networks, 116:237–245, 2019.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] J. Kupiec. Robust part-of-speech tagging using a hidden markov model. Computer speech &
language, 6(3):225–242, 1992.

5

www.vectorinstitute.ai/partners
www.vectorinstitute.ai/partners

[19] T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for anomaly detection.
ACM Transactions on Information and System Security (TISSEC), 2(3):295–331, 1999.

[20] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL-the planning domain definition language, 1998.

[21] T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

[22] W. Min, B. W. Mott, J. P. Rowe, B. Liu, and J. C. Lester. Player goal recognition in open-world
digital games with long short-term memory networks. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI), pages 2590–2596, 2016.

[23] J. Oncina and P. Garcia. Identifying regular languages in polynomial time. In Advances in
structural and syntactic pattern recognition, pages 99–108. World Scientific, 1992.

[24] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[25] G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer Science & Business
Media, 2012.

[26] F. Sebastiani. Machine learning in automated text categorization. ACM computing surveys
(CSUR), 34(1):1–47, 2002.

[27] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. URL
https://arxiv.org/abs/1912.01734.

[28] M. Shvo, A. C. Li, R. Toro Icarte, and S. A. McIlraith. Interpretable Sequence Classification
via Discrete Optimization. arXiv preprint arXiv:2010.02819, 2020.

[29] R. Smetsers, P. Fiterău-Broştean, and F. Vaandrager. Model learning as a satisfiability mod-
ulo theories problem. In International Conference on Language and Automata Theory and
Applications, pages 182–194. Springer, 2018.

[30] E. L. Sonnhammer, G. Von Heijne, A. Krogh, et al. A hidden markov model for predicting
transmembrane helices in protein sequences. In Ismb, volume 6, pages 175–182, 1998.

[31] E. M. Tapia, S. S. Intille, and K. Larson. Activity recognition in the home using simple
and ubiquitous sensors. In International conference on pervasive computing, pages 158–175.
Springer, 2004.

[32] V. Ulyantsev, I. Zakirzyanov, and A. Shalyto. Bfs-based symmetry breaking predicates for dfa
identification. In International Conference on Language and Automata Theory and Applications,
pages 611–622. Springer, 2015.

[33] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proceedings of the First Symposium on Logic in Computer Science, pages 322–331. IEEE
Computer Society, 1986.

[34] C. Zhou, C. Sun, Z. Liu, and F. Lau. A c-lstm neural network for text classification. arXiv
preprint arXiv:1511.08630, 2015.

6

https://arxiv.org/abs/1912.01734

Appendix

Table of Contents
A Learning DFAs from Training Data 7

A.1 From Training Data to Prefix Trees . 7
A.2 From Prefix Trees to DFAs . 7
A.3 Derivation of the Posterior Probability Distribution over the Set of Class Labels . 9

B Interpretability 9
B.1 Natural Language Generation for Counterfactual Explanation 9
B.2 Samples of Learned DFA Classifiers . 10
B.3 Transformation of Learned DFA Classifiers to Language-preserving Representations 13
B.4 Classifier Verification and Modification . 14
B.5 Linear Temporal Logic . 14

C Experimental Evaluation 15
C.1 Experimental Setup . 15
C.2 Datasets . 16
C.3 Additional Results . 17
C.4 Early Classification . 18
C.5 Multi-label Classification . 20

In Appendix A, we provide further details concering our procedure to learn a DFA-based classifier
from a training set. In Appendix B, we outline a simple natural language generation approach
for counterfactual explanation, present samples of learned DFA classifiers from our experiments,
discuss classifier verification and modification, and provide exposition of Linear Temporal Logic. In
Appendix C, we provide additional details of our experimental setup and our datasets and present ad-
ditional experimental results (including results from early and multi-label classification experiments).

A Learning DFAs from Training Data

In this appendix, we provide further details concerning our procedure to learn a DFA-based classifier
from a training set T = {(τ1, c1), . . . , (τN , cN)}. Recall that, for each possible label c ∈ C, we train
a separate DFA,Mc, responsible for recognizing traces with label c. We then use those DFAs to
compute a probability distribution for online classification of partial traces.

A.1 From Training Data to Prefix Trees

The first step to learning a DFA is to construct a Prefix Tree (PT). Algorithm 1 shows the pseudo-code
to do so. It receives the training set T and the label c+ of the positive class. It returns the PT for that
training set and class label. It also labels each PT node with the costs associated with classifying that
node as positive and negative, respectively. That cost depends on the length of the trace and its label,
and it is computed using the function add_cost().

A.2 From Prefix Trees to DFAs

We now discuss the MILP model we use to learn a DFA given a PT. The complete MILP model
follows.

min
∑
n∈N

cn + λe
∑
q∈Q

∑
σ∈Σ

eq,σ + λt
∑
n∈N

tn (MILP)

7

Algorithm 1 Converting Training Data into Prefix Trees

1: function GET_PREFIX_TREE(T , c+)
2: r ← create_root_node()
3: for (τ, c) ∈ T do
4: n← r
5: add_cost(n, c = c+, |τ |)
6: for σ ∈ τ do
7: if not has_child(n,σ) then
8: add_child(n,σ)
9: n← get_child(n,σ)

10: add_cost(n, c = c+, |τ |)
11: return r

s.t.
∑
q∈Q

xn,q = 1 ∀n ∈ N (1)

xr,0 = 1 (2)∑
q′∈Q

δq,σ,q′ = 1 ∀q ∈ Q, σ ∈ Σ (3)

δq,σ,q = 1 ∀q ∈ T, σ ∈ Σ (4)

xp(n),q + xn,q′ − 1 ≤ δq,s(n),q′ ∀n ∈ N \ {r}, q ∈ Q, q′ ∈ Q (5)

cn = λ+
∑
q∈F

c+(n)xn,q + λ−
∑

q∈Q\F

c−(n)xn,q ∀n ∈ N (6)

eq,σ =
∑

q′∈Q\{q}

δq,σ,q′ ∀q ∈ Q, σ ∈ Σ (7)

tn =
∑

q∈Q\T

xn,q ∀n ∈ N (8)

xn,q ∈ {0, 1} ∀n ∈ N, q ∈ Q (9)

δq,σ,q′ ∈ {0, 1} ∀q ∈ Q, σ ∈ Σ, q′ ∈ Q (10)
cn ∈ R ∀n ∈ N (11)
eq,σ ∈ R ∀q ∈ Q, σ ∈ Σ (12)
tn ∈ R ∀n ∈ N (13)

This model learns a DFA over a vocabulary Σ with at most qmax states. From those potential states
Q, we set state 0 to be the initial state q0 and predefine a set of accepting states F ⊂ Q and a set of
terminal states T ⊂ Q. We also use the following notation to refer to nodes in the PT: r is the root
node, p(n) is the parent of node n, s(n) is the symbol that caused node p(n) to transition to node
n, c+(n) is the cost associated with predicting node n as positive, c−(n) is the cost associated with
predicting node n as negative, and N is the set of all PT nodes. The model also has hyperparameters
λe and λt to weight our regularizers and hyperparameters λ+ and λ− to penalize misclassifications
of positive and negative examples differently (in the case where the training data is imbalanced).

The idea behind our model is to assign DFA states to each node in the tree. Then, we look for an
assignment that is feasible (i.e., it can be produced by a deterministic DFA) and optimizes a particular
objective function—which we describe later. The main decision variables are xn,q and δq,σ,q′ , both
binary. Variable xn,q is 1 iff node n ∈ N is assigned the DFA state q ∈ Q. Variable δq,σ,q′ is 1 iff the
DFA transitions from state q ∈ Q to state q′ ∈ Q given symbol σ ∈ Σ. Note that cn, eq,σ , and tn are
auxiliary (continuous) variables used to compute the cost of the DFAs.

Constraint (1) ensures that only one DFA state is assigned to every PT node and constraint (2) forces
the root node to be assigned to q0. Constraint (3) ensures that the DFA is deterministic and constraint
(4) makes the terminal nodes sink nodes. Finally, constraint (5) ensures that the assignment can be
emulated by the DFA. The rest of the constraints compute the cost of solutions and the domain of the
variables. In particular, note that the objective function minimizes the prediction error using cn, the

8

number of transitions between different DFA states using eq,σ, and the occupancy of non-terminal
states using tn.

This model has O(|N ||Q|+ |Σ||Q|2) decision variables and O(|N ||Q|2 + |Σ||Q|) constraints.

A.3 Derivation of the Posterior Probability Distribution over the Set of Class Labels

Given a trace (or partial trace) τ and the decisions of the one-vs-rest classifiers {Dc(τ) : c ∈ C}, we
use an approximate Bayesian method to infer a posterior probability distribution over the true label
c∗. Each Dc(τ) is treated as a discrete random variable with possible outcomes {accept, reject}.
We make the following assumptions: (1) the classification decisions Dc for c ∈ C are conditionally
independent given the true label c∗ and (2) p(Dc|c∗) only depends on whether c = c∗.

For each c′, we compute the posterior probability of c∗ = c′ to be

p(c∗ = c′|{Dc : c ∈ C})
∝ p(c∗ = c′) ∗ p({Dc : c ∈ C}|c∗ = c′) (using Bayes’ rule)

= p(c∗ = c′) ∗
∏
c∈C

p(Dc|c∗ = c′) (using (1))

= p(c∗ = c′) ∗ p(Dc′ |c∗ = c′) ∗
∏

c∈C\{c′}

p(Dc|c∗ 6= c) (using (2))

∝ p(c∗ = c′) ∗ p(Dc′ |c∗ = c′)

p(Dc′ |c∗ 6= c′)
(dividing through by the constant

∏
c∈C

p(Dc|c∗ 6= c))

The probabilities on the right-hand side are estimated using a held-out validation set. In particular,
the prior probability p(c∗ = c′) is the approximate proportion of examples with label c′, p(Dc′ =
accept|c∗ = c′) is the recall of the classifier for label c′, and so on. We normalize the posterior
probabilities p(c∗ = c′|{Dc : c ∈ C}) such that their sum over c′ ∈ C is 1 to obtain a valid probability
distribution. Note that we could potentially improve the inference by further conditioning on the
number of observations seen so far, or relaxing assumption (2). However, this would substantially
increase the number of probabilities to be estimated and result in less accurate estimates in low-data
settings.

B Interpretability

DFAs provide a compact, graphical representation of a (potentially infinite) set of traces the DFA
positively classifies. While many people will find the DFA structure highly interpretable, the DFA
classifier can be transformed into a variety of different language-preserving representations including
regular expressions, context-free grammars (CFGs), and variants of Linear Temporal Logic (LTL) [24]
(see also Appendix § B.5). These transformations are automatic and can be decorated with natural
language to further enhance human interpretation (see also Appendix § B.4).

B.1 Natural Language Generation for Counterfactual Explanation

In Section 4 of our paper, we discussed counterfactual explanations, which are useful in cases
where a classifier does not return a positive classification for a trace. Here we describe a simple
algorithm that transforms a counterfactual explanation (comprising a sequence of edit operations) to
an English sentence. We define three edit operations over strings: REPLACE(s, c1, c2) replaces the
first occurrence of the character c1 in the string s with the character c2; INSERT(s, c1, c2) inserts the
character c1 after the first occurrence of the character c2 in the string s; DELETE(s, c1) removes the
first occurrence of the character c1 from the string s.

Algorithm 2 accepts as input a sequence of edit operations e1, e2, . . . , en (where ei is either a replace,
insert, or delete operation), and returns a string representing an English sentence encoding the
counterfactual explanation for some trace τ . Redundant “and"s are removed from the resulting string.
We do not consider multiple occurrences of the same character in a single string but this can be easily
handled. ei.args[i] is assumed to return the i+ 1th argument of an edit operation ei and ei.type is
assumed to return the type of the edit operation (e.g., REPLACE). CONCATENATE(s1, s2) appends

9

the string s2 to the suffix of the string s1. We further assume that connectives (e.g., ‘and’) are added
between the substrings representing the edit operations.

Algorithm 2 Natural Language Generation for Counterfactual Explanation
Require: A sequence of edit operations E = e1, e2, . . . , en
1: s← “The binary classifier would have accepted the trace"
2: For e in E:
3: If e.type == REPLACE
4: CONCATENATE(s, “ had e.args[2] been observed instead of e.args[1]")
5: If ei.type == INSERT
6: CONCATENATE(s, “ had e.args[2] been observed following the observation of e.args[1]")
7: If e.type == DELETE
8: CONCATENATE(s, “ had e.args[1] been removed from the trace")
9: RETURN s

For example, using the DFA depicted in Figure 1, if τ = (A, H2, H1, ♂) then a possible counterfactual
explanation is the edit operation REPLACE(τ , ♂, K) which transforms (A, H2, H1, ♂) to (A, H2,
H1, K). Given the edit operation REPLACE(τ , ♂, K), Algorithm 2 returns the string “The binary
classifier would have accepted the trace had K been observed instead of ♂".

B.2 Samples of Learned DFA Classifiers

In this appendix we present a number of examples of DFAs learned by DISC from our experimental
evaluation in Section 5 of our paper. As discussed in Section 4, our purpose in this work is to
highlight the breadth of interpretability services afforded by DFA classifiers via their relationship to
formal language theory. The effectiveness of a particular interpretability service is user-, domain-,
and even task-specific and is best evaluated in the context of individual domains. Moreover, the DFAs
presented in this appendix require familiarity with the domain in question and are therefore best
suited for domain experts.

B.2.1 Malware

We present two DFAs learned via DISC from the real-world malware datasets. Figure 3 depicts a
DFA classifier for BatteryLow that detects whether a trace of Android system calls was issued by
the malware family DroidKungFu4. The maximum number of states is limited to 10. The trace τ =
(sendto, epoll_wait, recvfrom, gettid, getpid, read) is rejected by the depicted DroidKungFu4 DFA
classifier. This can be seen by starting at the initial state of the DFA, q0, and mentally following the
DFA transitions corresponding to the symbols in the trace. The exercise of following the symbols of
the trace transition through the DFA can be done by anyone. For the domain expert, the symbols have
meaning (and can be replaced by natural language words that are even more evocative, as necessary).
In this trace we see that rather than stopping at accepting state q6, the trace transitions in the DFA to
q5, a non-accepting state. One counterfactual explanation that our system generates to address what
changes could result in a positive classification is: “The binary classifier would have accepted the
trace had read been removed from the trace" (per the algorithm in Appendix B.1).

For comparison, Figure 4 presents a smaller DFA for BootCompleted, learned with the maximum
number of states limited to 5. (This DFA was not used in our experiments.) The DFA detects whether
a trace was issued by the malware family DroidDream. The trace (here truncated, as subsequent
observations do not affect the classification decision) τ = (clock_gettime, epoll_wait, clock_gettime,
clock_gettime, getpid, writev, ...) is rejected by the DFA. One counterfactual explanation that our
system generates to address what changes could result in a positive classification is: “The binary
classifier would have accepted the trace had getuid32 been observed instead of writev".

Note that while the 5-state DFA may be more interpretable to humans than the 10-state DFA, the 10-
state DFA can model more complex patterns in the data. Indeed, during the course of our experiments
with the malware datasets, we found that setting qmax = 10 achieved superior performance to
qmax = 5.

10

q0

q3 q1

q8

q2

q4

q5

q7 q9

q6

o/w

always

always

o/w

o/w

o/w
o/w

o/w

o/w

o/w

futex

read

read

gettid or sendto

clock_gettime

clock_gettime

getpid read or
clock_gettime

epoll_wait

clock_gettime

clock_gettime

recvfrom

epoll_wait

clock_gettime

clock_gettime

Figure 3: A DFA learned in our experiments from the BatteryLow dataset by limiting the maximum
number of states to 10. A decision is provided after each new observation based on the current state:
yes for the blue accepting state, and no for the red, non-accepting states. “o/w” (otherwise) stands for
all symbols that do not appear on outgoing edges from a state. “always” stands for all symbols.

B.2.2 Crystal Island

Figure 5 depicts a DFA classifier learned from the Crystal Island dataset that detects whether a trace
of player actions was performed in order to achieve the goal Talked-to-Ford. The maximum number
of states is limited to 5.

Consider the trace τ = (pickup banana, move outdoors (2a), move outdoors (2b), open door infirmary
bathroom, move outdoors (3a), move hall), which is rejected by the depicted Talked-to-Ford DFA
classifier. One possible counterfactual explanation to result in a positive trace is: “The binary classifier
would have accepted the trace had move sittingarea been observed following the observation of move
hall". Additionally, a necessary condition for this DFA to accept is that either talk ford or move
sittingarea is observed — or equivalently, the LTL property ♦ (talk ford ∨ move sittingarea). This
LTL formula is entailed by the DFA.

11

q0

q3 q2

q1 q4o/w

always

o/wo/w

always

recvfrom

epoll_wait
writev

read
clock_gettime

getuid32

Figure 4: A DFA learned from the BootCompleted dataset by limiting the maximum number of states
to 5. A decision is provided after each new observation based on the current state: yes for the blue
accepting state, and no for the red, non-accepting states. “o/w” (otherwise) stands for all symbols
that do not appear on outgoing edges from a state. “always” stands for all symbols.

q0

q3 q1

q2

q4

o/w

always

always

o/w

o/w

talk
ford

move hall

open door mensquarters front
move
hall

move
sittingarea

Figure 5: A DFA learned from the Crystal Island dataset, limiting the maximum number of states
to 5. A decision is provided after each new observation based on the current state: yes for the blue
accepting state, and no for the red, non-accepting states. “o/w” (otherwise) stands for all symbols
that do not appear on outgoing edges from a state. “always” stands for all symbols.

B.2.3 StarCraft

Figure 6 depicts a DFA classifier learned from the StarCraft dataset that detects whether a trace of
actions was generated by the StarCraft-playing agent EconomyMilitaryRush. The maximum number
of states is limited to 10.

The trace τ = (move produce, produce, move produce, move, move, move, harvest, harvest, harvest,
move produce, move produce, attack move move) is rejected by the depicted EconomyMilitaryRush
DFA classifier. A counterfactual explanation to result in a positive trace is: “The binary classifier
would have accepted the trace had harvest move been observed instead of attack move move". A
necessary condition for the DFA to accept is that either move produce or harvest produce is observed
in the trace. Furthermore, every trace starting with harvest produce will be accepted. As discussed in
Section 4, these properties can be automatically extracted from the DFAs.

12

q0

q3 q1
q2

q4

q5

o/w

always

always

o/w

o/w

o/w

harvest
produce

move produce

move

move
move

move

move
move

producemove
produce

harvest
move

return

produce

Figure 6: A DFA learned from the StarCraft dataset by limiting the maximum number of states to
10. A decision is provided after each new observation based on the current state: yes for the blue
accepting state, and no for the red, non-accepting states. “o/w” (otherwise) stands for all symbols
that do not appear on outgoing edges from a state. “always” stands for all symbols.

B.3 Transformation of Learned DFA Classifiers to Language-preserving Representations

As mentioned in Section 4, DFAs provide a compact, graphical representation of a (potentially infinite)
set of traces the DFA positively classifies. While many people will find the DFA structure highly
interpretable, the DFA classifier can be transformed into a variety of different language-preserving
representations including regular expressions, context-free grammars (CFGs), and variants of Linear
Temporal Logic (LTL) [24]. These transformations are automatic and can be decorated with natural
language to further enhance human interpretation.

Example B.1 The following regular expression compactly describes the set of traces that are classi-
fied as belonging to the DFA classifier depicted in Figure 1: [(Σ−{♀,♂, H2, H3})∗(H2∪H3)(Σ−
{A,B,H1, H2})∗(H1 ∪H2)]∗(Σ− {♀,♂, H2, H3})∗KΣ∗

Of course, this regular expression is only decipherable to a subset of computer scientists. We include
it in order to illustrate/demonstrate the multiple avenues for interpretation afforded by our DFA
classifiers. In particular, the regular expression can be further transformed into a more human-
readable form as illustrated in Example B.2 or transformed into a CFG that is augmented with natural
language in order to provide an enumeration, or if abstracted, a compact description of the traces
accepted by the DFA classifier.

Example B.2 The regular expression can be transformed into a more readable form such as:
"Without first doing ♀ or ♂, repeat the following zero or more times: eventually do H2 or H3, then
without doing A or B, eventually do H1 or H2, followed optionally by other events, excluding ♀ and ♂.
Finally do K, followed by anything."

For others, it may be informative to extract path properties of a DFA as LTL formulae, perhaps over a
subset of Σ or with preference for particular syntactic structures (e.g., [4]).

13

Example B.3 DFA classifierM |= �♦K, the LTL property "always eventually do K ".

These transformations and entailments utilize well studied techniques from formal language theory
(e.g., [25]). Which delivery form is most effective is generally user- and/or task-specific and should
be evaluated in situ via a usability study.

B.4 Classifier Verification and Modification

Explanation encourages human trust in a classification system, but it can also expose rationale that
prompts a human (or automated system) to further question or to wish to modify the classifier.
Temporal properties of the DFA classifierM, such as “Neither ♀ nor ♂ occur before K” can be
straightforwardly specified in LTL and verified againstM using standard formal methods verification
techniques (e.g., [33]). In the case where the property is false, a witness can be be returned.

Our learned classifiers are also amenable to the inclusion of additional classification criteria, and the
modification to the DFA classifier can be realized via a standard product computation.

Let L1 and L2 be regular languages over Σ. Their intersection is defined as L1 ∩ L2 = {x | x ∈
L1 and x ∈ L2}. LetM1 andM2 be the DFAs that accept L1 and L2, respectively. The product of
M1 andM2 isM1 ×M2 where the language accepted by the DFAM1 ×M2 is equal to L1 ∩ L2

(i.e., L(M1 ×M2) = L1 ∩ L2).

Definition B.1 (Classifier Modification) Given a DFA encoding some classification criterionMc

and a DFA classifierM, the modified classifierM′ is the product ofM andMc.

Classifier modification ensures the enforcement of criterionMc inM′. However, such post-training
modification could result in rejection of traces in the dataset that are labelled as positive examples of
the class. Such modification can (and should) be verified against the dataset. Finally, modification
criteria can be expressed directly in a DFA, or specified in a more natural form such as LTL.

B.5 Linear Temporal Logic

In Section 4 we proposed Linear Temporal Logic (LTL) as a candidate language for conveying
explanations to humans or other agents, and for use by humans or other agents to express temporal
properties that the agent might wish to add to the classifier or have verified. In what follows we
review the basic syntax and semantics of LTL. Note that LTL formulae can be interpreted over either
infinite or finite traces, with the finite interpretation requiring a small variation in the interpretation of
formulae in the final state of the finite trace. Here we describe LTL interpreted over infinite traces
noting differences as relevant.

LTL is a propositional logic language augmented with modal temporal operators next () and until
(U), from which it is possible to define the well-known operators always (�), eventually (♦), and
release (R). When interpreted over finite traces, a weak next () operator is also utilized, and is
equivalent to when π is infinite. An LTL formula over a set of propositions P is defined inductively:
a proposition in P is a formula, and if ψ and χ are formulae, then so are ¬ψ, (ψ ∧ χ), (ψ U χ), ψ,
and ψ.

The semantics of LTL are defined as follows. A trace π is a sequence of states, where each state is an
element in 2P . We denote the first state of π as s1 and the i-th state of π as si; |π| is the length of
π (which is∞ if π is infinite). We say that π satisfies ϕ (π |= ϕ, for short) iff π, 1 |= ϕ, where for
every i ≥ 1:

• π, i |= p, for a propositional variable p ∈ P , iff p ∈ si,
• π, i |= ¬ψ iff it is not the case that π, i |= ψ,

• π, i |= (ψ ∧ χ) iff π, i |= ψ and π, i |= χ,

• π, i |= ϕ iff i < |π| and π, i+ 1 |= ϕ,

• π, i |= (ϕ1 U ϕ2) iff for some j in {i, . . . , |π|}, it holds that π, j |= ϕ2 and for all k ∈
{i, . . . , j − 1}, π, k |= ϕ1,

• π, i |= ϕ iff i = |π| or π, i+ 1 |= ϕ.

14

♦ϕ is defined as (trueU ϕ), �ϕ as ¬♦¬ϕ, and (ψRχ) as ¬(¬ψ U ¬χ).

Given an LTL formula ϕ there exists an automaton Aϕ that accepts a trace π iff π |= ϕ. It follows
that, given a set of consistent LTL formulae, {ϕ1, . . . , ϕn}, there exists an automaton, Aϕ,where
ϕ =

∧
i ϕi, that accepts a trace π iff π |= ϕi, for all i. As noted in Section 2 an automaton defines a

language—a set of words that are accepted by the automaton. We say that an automaton A satisfies
an LTL formula, ϕ, A |= ϕ iff for every accepting trace, πi of A, πi |= ϕ. Such satisfying LTL
formulae provide another means of explaining the behaviour of a DFA classifier.

Depending on whether LTL formula, ϕ, is interpreted over finite or infinite traces, different types of
automata are needed to capture ϕ. For the purposes of this paper, it is sufficient to know that DFAs
are sufficiently expressive to capture any LTL formulae interpreted over finite traces, but only a subset
(a large and useful subset) of LTL formulae interpreted over infinite traces.

C Experimental Evaluation

C.1 Experimental Setup

We first provide experimental details for each method used in our main set of experiments in Section
5. DISC, LSTM, and HMM used a validation set consisting of 20% of the training traces per class
on all domains except MIT-AR. This was since MIT-AR consisted of very limited training data, and
using a validation set worsened performance in all cases. We describe the specific modifications
for each method below. Additionally, minor changes were made for our experiments on multi-label
classification (described in C.5).

DISC (our approach) used Gurobi optimizer to solve the MILP formulation for learning DFAs. We
set qmax, the maximum possible number of states in a DFA, to 5 for Crystal Island and MIT-AR
and 10 for all other domains along with a time limit of 15 minutes to learn each DFA. DISC also
uses two regularization terms to prevent overfitting: a term penalizing the number of transitions
between different states, with coefficient λt; and a term penalizing nodes not assigned to an absorbing
state, with coefficient λa. We set λa = 0.001, and use a validation procedure to choose λt from 11
approximately evenly-spaced values (on a logarithmic scale) between 0.0001 and 10, inclusive. The
model with maximum F1-score on the validation set is selected. For MIT-AR, instead of using a
validation set, we choose λt from a small set of evenly-spaced values ({3, 5.47, 10}) and select the
model with highest training F1-score.

The DFA-FT baseline utilized the full tree of observations (rather than the prefix tree used in DISC)
and learned one DFA per label. A single positive and negative DFA state were designated, and any
node in the tree whose suffixes were all positive or negative were assigned to the positive or negative
state, respectively. Every other node of the tree was assigned to a unique DFA state and attached with
the empirical (training) probability of a trace being positive, given that it transitions through that DFA
state. To classify a trace in the presence of multiple classes, all |C| DFAs were run in parallel, and the
class of the DFA with highest probability was returned.

Our LSTM model consisted of two LSTM layers, a linear layer mapping the final hidden state to
labels, and a log-softmax layer. The LSTM optimized a negative log-likelihood objective using Adam
optimizer [17], with equal weight assigned to each prefix of the trace (to encourage early prediction).
We observed inferior performance overall when using one or four LSTM layers. The batch size was
selected from {8, 32}, the size of the hidden state from {25, 50}, and the number of training epochs
from [1, 300] by choosing the model with the highest validation accuracy given full traces. For the
MIT-AR dataset, the hyperparameters were hand-tuned to 8 for batch size, 25 for hidden dimension,
and 75 epoches.

Our HMM model was based on an open-source Python implementation for unsupervised HMMs
from Pomegranate1. We trained a separate HMM for each class, and classify a trace by choosing the
HMM with highest probability. Each HMM was trained with the Baum-Welch algorithm using a
stopping threshold of 0.001 and a maximum of 106 iterations. The validation set was used to select
the number of discrete hidden states from {5, 10} and a pseudocount (for smoothing) from {0, 0.1, 1}.
For MIT-AR we hand-tuned these hyperparameters to 10 for the number of hidden states and 1 for
the pseudocount.

1https://pomegranate.readthedocs.io/en/latest/

15

https://pomegranate.readthedocs.io/en/latest/

The n-gram models did not require validation. We used a smoothing constant α = 0.5 to prevent
estimating a probability of 0 for unseen sequences of observations.

C.2 Datasets

The StarCraft and Crystal Island datasets were obtained thanks to the authors [12, 15], while the
malware datasets, ALFRED, and MIT-AR are publicly available234.

Malware

The two malware datasets (BootCompleted, BatteryLow) were generated by Bernardi et al. (2019)
by downloading and installing various malware applications with various intents (e.g., wiretapping,
selling user information, advertisement, spam, stealing user credentials, ransom) on an Android phone.
Each dataset reflects an Android operating system event (e.g., the phone’s battery is at 50%) that is
broadcasted system-wide (such that the broadcast also reaches every active application, including the
running malware). Each family of malware is designed to react to a system event in a certain way,
which can help distinguish it from the other families of malware (see Table 4 in [3] for the list of
malware families used in the dataset).

A single trace in the dataset comprises a sequence of ‘actions’ performed by the malware application
(e.g., the system call clock_gettime) in response to the Android system call in question, and labelled
with the class label corresponding to the particular malware family.

StarCraft

The StarCraft dataset was constructed by Kantharaju et al. (2019) by using replay data of StarCraft
games where various scripted agents were playing against one another. To this end, the real-time
strategy testbed MicroRTS5 was used. The scripted agents played in a 5-iterations round-robin tourna-
ment with the following agent types: POLightRush, POHeavyRush, PORangedRush, POWorkerRush,
EconomyMilitaryRush, EconomyRush, HeavyDefense, LightDefense, RangedDefense, WorkerDefense,
WorkerRushPlusPlus. Each agent competed against all other agents on various maps.

A replay for a particular game comprises a sequence of both players’ actions, from which the
authors extracted one labelled trace for each player. We label each trace with the agent type (e.g.
WorkerRushPlusPlus) that generated the behaviour.

Crystal Island

Crystal Island is an educational adventure game designed for middle-school science students [12, 22],
with the dataset comprising in-game action sequences logged from students playing the game. “In
Crystal Island, players are assigned a single high-level objective: solve a science mystery. Players
interleave periods of exploration and deliberate problem solving in order to identify a spreading
illness that is afflicting residents on the island. In this setting, goal recognition involves predicting
the next narrative sub-goal that the player will complete as part of investigating the mystery" [12].
Crystal Island is a particularly challenging dataset due to players interleaving exploration and problem
solving which leads to noisy observation sequences.

A single trace in the dataset comprises a sequence of player actions, labelled with a single narrative
sub-goal (e.g., speaking with the camp’s virus expert and see Table 2 in [12]). Each observation in
the trace includes one of 19 player action-types (e.g., testing an object using the laboratory’s testing
equipment) and one of 39 player locations. Each unique pair of action-type and location is treated as
a distinct observation token.

ALFRED

ALFRED (Action Learning From Realistic Environments and Directives) is a benchmark for learning
a mapping from natural language instructions and egocentric vision to sequences of actions for

2https://github.com/mlbresearch/syscall-traces-dataset
3https://github.com/askforalfred/alfred/tree/master/data
4https://courses.media.mit.edu/2004fall/mas622j/04.projects/home/
5https://github.com/santiontanon/microrts

16

https://github.com/mlbresearch/syscall-traces-dataset
https://github.com/askforalfred/alfred/tree/master/data
https://courses.media.mit.edu/2004fall/mas622j/04.projects/home/
https://github.com/santiontanon/microrts

household tasks. We generate our training set from the set of expert demonstrations in the ALFRED
dataset which were produced by a classical planner given the high-level environment dynamics,
encoded in PDDL [20]. Task-specific PDDL goal conditions (e.g., rinsing off a mug and placing it in
the coffee maker) were then specified and given to the planner, which generated sequences of actions
(plans) to achieve these goals. There are 7 different task types which we cast as the set of class labels
C (see Figure 2 in [27]): Pick & Place; Stack & Place; Pick Two & Place; Examine in Light; Heat &
Place; Cool & Place; Clean & Place.

A single trace in the dataset comprises a sequence of actions taken by the agent in the virtual home
environment, labelled with one of the class labels described above (e.g., Heat & Place).

MIT Activity Recognition (MIT-AR)

MIT-AR was generated by Tapia et al. (2004) by collecting sensor data over a two week period from
multiple sensors installed in a myriad of everyday objects such as drawers, refrigerators and containers.
The sensors recorded opening and closing events related to these objects while the human subject
carried out everyday activities. The resulting noisy sensor sequence data was manually labelled with
various high-level daily activities in which the human subject was engaged. The activities in this
dataset (which serve as the class labels in our experiments) include preparing dinner, listening to
music, taking medication and washing dishes, and are listed in Table 5.3 in [31]. In total there are 14
activities.

A single trace in the dataset comprises a sequence of sensor recordings (e.g., kitchen drawer interacted
with or kitchen washing machine interacted with), labelled with one of the class labels described
above (e.g., washing dishes).

C.3 Additional Results

Percent Accuracy given full observation traces
Dataset N |τ | DISC DFA-FT LSTM HMM 1-gram 2-gram
Crystal Island 893 52.9 78 (±1.2) 46 (±1.0) 87 (±1.1) 57 (±1.2) 69 (±0.9) 57 (±1.1)
StarCraft 3872 14.8 43 (±0.4) 38 (±0.4) 44 (±0.4) 38 (±0.6) 29 (±0.4) 37 (±0.4)
ALFRED 2520 7.5 99 (±0.1) 94 (±0.3) 99 (±0.1) 97 (±0.7) 83 (±0.3) 94 (±0.2)
MIT-AR 283 9.3 57 (±1.9) 36 (±1.9) 56 (±1.9) 45 (±2.1) 66 (±2.0) 55 (±1.5)
BootCompleted 477 206.0 59 (±2.2) 69 (±1.5) 65 (±1.3) 54 (±2.4) 46 (±2.8) 55 (±1.6)
BatteryLow 283 216.2 60 (±1.4) 73 (±1.4) 70 (±1.4) 52 (±2.2) 35 (±1.3) 54 (±1.5)

Table 1: A summary of results from all domains (DISC is our approach). With respect to the full
dataset, N is the total number of traces, and |τ | is the average length of a trace. Reported are the
percentages of traces correctly classified given the full observation trace, with 90% confidence error
in parentheses. Highest accuracy is bolded.

(# DFA states, # state transitions)
Dataset DISC DFA-FT
StarCraft 8.8, 37.2 170.4, 196.0
MIT-AR 3.0, 1.83 18.3, 103.4
Crystal Island 3.9, 26.2 166.6, 451.4
ALFRED 5.1, 9.0 26.8, 53.2
BootCompleted 9.7, 42.7 321.3, 391.5
BatteryLow 8.9, 27.2 325.1, 365.7

Table 2: The average number of DFA states (first), and the average number of state transitions
(second) in learned models for DISC (ours) and DFA-FT over twenty runs, using the experimental
procedure in Section C.1.

A summary of results over all datasets is reported in Table 1. We display the extensive results for
each dataset in Figures 7, 8, 9. For each domain, we present a line plot displaying the Cumulative
Convergence Accuracy (CCA) up to the maximum length of any trace and a bar plot displaying the
PCA at 20%, 40%, 60%, 80%, and 100% of observations. Error bars report a 90% confidence interval
over 30 runs.

17

Crystal Island

2 8 32 128 512
Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

20% 40% 60% 80% 100%
Percentage of observations

StarCraft

1 2 4 8 16
Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

DISC (ours)
DFA-FT

LSTM
HMM

One-gram
Two-gram

20% 40% 60% 80% 100%
Percentage of observations

DISC (ours)
DFA-FT

LSTM
HMM

One-gram
Two-gram

Figure 7: Results for the Crystal Island and StarCraft domains.

We further report in Table 2 the average number of states and transitions in learned DFAs for DISC
and DFA-FT. DFAs learned using DISC were generally an order of magnitude smaller than DFAs
learned using DFA-FT.

C.4 Early Classification

The two key problems in early prediction are: (1) to maximize accuracy given only a prefix of the
sequence and (2) to determine a stopping rule for when to make a classification decision. (1) is
not significantly different from vanilla sequence classification, thus, most work in early prediction
focuses on (2). While many different stopping rules have been proposed in the literature, the correct
choice should be task-dependent as it requires making a trade-off between accuracy and earliness.
Furthermore, it is difficult to objectively compare early prediction models that may make decisions
at different times. Our early classification experiment is designed to evaluate two essential criteria:
the accuracy of early classification, and the accuracy of classifier confidence, while remaining
independent of choice of stopping rule.

Thus, we expand upon the early classification setting briefly mentioned in Section 5 where an agent
can make an irrevocable classification decision after any number of observations, but prefers to make
a correct decision as early as possible. This is captured by a non-increasing utility function U(t)
for a correct classification. Note the agent can usually improve its chance of a correct prediction by
waiting to see more observations. If the agent’s predictive accuracy after t observations is p(t), then
to maximize expected utility, the agent should make a decision at time t∗ = argmaxt{U(t)p(t)}.
However, the agent only has access to its estimated confidence measures conf(t) ≈ p(t). Thus,

18

ALFRED

1 2 4 8 16
Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

20% 40% 60% 80% 100%
Percentage of observations

MIT-AR

1 2 4 8 16 32 64 128
Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

DISC (ours)
DFA-FT

LSTM
HMM

One-gram
Two-gram

20% 40% 60% 80% 100%
Percentage of observations

DISC (ours)
DFA-FT

LSTM
HMM

One-gram
Two-gram

Figure 8: Results for the Alfred and MIT-AR domains.

Average utility
Dataset DISC LSTM 1-gram 2-gram
ALFRED 0.840(±0.014) 0.855(±0.003) 0.703(±0.002) 0.792(±0.003)
StarCraft 0.337(±0.005) 0.341(±0.005) 0.194(±0.004) 0.273(±0.006)
BootCompleted 0.203(±0.014) 0.218(±0.018) 0.113(±0.003) 0.157(±0.006)

Table 3: Results for the early classification experiment. Average utility per trace over twenty runs is
reported with 90% confidence error, with the best mean performance in each row in bold.

success in this task requires not only high classification accuracy, but also accurate confidence in
one’s own predictions.

We test this setting on a subset of domains, with utility function U(t) = max{1− t
40 , 0}. We make

the assumption that at time t, the classifier only has access to the first t observations, but has full
access to the values of conf(t′) for all t′ and can therefore choose the optimal decision time. We
only consider baselines which produce a probability distribution over labels (DISC, LSTM, n-gram),
defining the classifier’s confidence to be the probability assigned to the predicted label (i.e. the most
probable goal).

Results are shown in Table 3. DISC has a strong performance on each domain, only comparable by
LSTM. This suggests the confidence produced by DISC accurately approximates its true predictive
accuracy.

19

BootCompleted

2 8 32 128 512
Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

20% 40% 60% 80% 100%
Percentage of observations

BatteryLow

2 8 32 128 512
Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

DISC (ours)
DFA-FT

LSTM
HMM

One-gram
Two-gram

20% 40% 60% 80% 100%
Percentage of observations

DISC (ours)
DFA-FT

LSTM
HMM

One-gram
Two-gram

Figure 9: Results for the BootCompleted and BatteryLow domains.

C.5 Multi-label Classification

In the goal recognition datasets used in our work we assume agents pursue a single goal achieved
by the sequence of actions encoded in the sequence of observations. However, often times an agent
will pursue multiple goals concurrently, interleaving actions such that each action in a trace is aimed
at achieving any one of multiple goals. For instance, if an agent is trying to make toast and coffee,
the first action in their plan may be to fill the kettle with water, the second action may be to put the
kettle on the stove, their third action might be to take bread out of the cabinet, and so on. We cast this
generalization of the goal recognition task as a multi-label classification problem where each trace
may have one or more class labels (e.g., toast and coffee).

We experiment with a synthetic kitchen dataset [13] where an agent is pursuing multiple goals
and non-deterministically switching between plans to achieve them. A single trace in this dataset
comprises actions performed by the agent in the kitchen environment in pursuit of multiple goals
drawn from the set of possible goals. Each trace is labelled with multiple class labels corresponding
to the goals achieved by the interleaved plans encoded in the trace. In total there are 7 goals the agent
may be pursuing (|C| = 7) and 25 unique observations (|Σ| = 25). The multi-goal kitchen dataset
was obtained with thanks to the authors [13].

We modify DISC for this setting by directly using the independent outputs of the binary one-vs-rest
classifiers—Bayesian inference is no longer necessary since we do not need to discriminate a single
label. Precisely, for a given trace τ , we independently run all |C| DFA classifiers and return all classes
for which the corresponding DFA accepts. We also disable the reweighting technique described in
A.2 (i.e. by setting λ+ = λ− = 1) to focus on optimizing accuracy. We set DISC’s hyperparameters

20

1 2 4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Kitchen Multigoal

Number of observations

DISC (ours) LSTM

Figure 10: CCA for the Kitchen domain. Error bars represent a 90% confidence interval over 30 runs.

to qmax = 5, λa = 0.001, λt = 0.0003. The LSTM baseline is modified to return a |C|-dimensional
output vector containing an independent probability for each class and is trained with a cross-entropy
loss averaged over all dimensions. At test time, we predict all classes c ∈ C with probability greater
than 0.5. We set the LSTM’s hyperparameters to 8 for batch size, 25 for hidden dimension size, and
250 for number of epoches. Results are shown in Figure 10, where we report the mean accuracy,
averaged over all goals, over 30 runs. DISC achieves similar performance to LSTM (c) on this task.

21

	Introduction
	Background and Running Example
	Learning DFAs for Sequence Classification
	Classifier Interpretability
	Experimental Evaluation
	Concluding Remarks
	
	
	Learning DFAs from Training Data
	From Training Data to Prefix Trees
	From Prefix Trees to DFAs
	Derivation of the Posterior Probability Distribution over the Set of Class Labels

	Interpretability
	Natural Language Generation for Counterfactual Explanation
	Samples of Learned DFA Classifiers
	Malware
	Crystal Island
	StarCraft

	Transformation of Learned DFA Classifiers to Language-preserving Representations
	Classifier Verification and Modification
	Linear Temporal Logic

	Experimental Evaluation
	Experimental Setup
	Datasets
	Additional Results
	Early Classification
	Multi-label Classification

