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Abstract

Humans appear to effortlessly generalize knowledge of similar objects and relations
when learning new tasks. For example, humans playing Minecraft can learn how
to use a tool to mine one block, then rapidly generalize that skill to mine others.
We leverage graph-encoded object priors to capture this property and improve the
performance of reinforcement learning agents across multiple tasks. We introduce
a novel, flexible architecture that utilizes graph convolutional networks (GCNs),
which provide a natural method to combine relational information over connected
nodes. We evaluate our approach on a procedurally-generated, multi-task environ-
ment: Symbolic Procgen. Our experiments demonstrate that the method generalizes
across many tasks and scales to domains with hundreds of objects and relations.
Additionally, we perform ablation studies that demonstrate robustness to noisy
graph priors, suggesting that the method is suitable for leveraging graphs generated
from large, unstructured sources of knowledge in real-world settings.

1 Introduction

Deep reinforcement learning (RL) has achieved tremendous success over the last few years, with
advances in Go [22], Chess, and Shogi [23], as well as video game domains like the Atari 2600 suite
[17]. However, these incredible advances require an equally incredible amount of data: millions of
frames of training data and many hundreds of hours of compute resources. Humans, on the other
hand, are far more efficient at learning how to solve novel tasks [2, 16]. Prior work has hypothesized
that this gap can be attributed to prior knowledge and built-in inductive biases. Humans do not learn
new tasks from scratch [4, 5]; instead, they rely on millions of years of evolution and a wealth of
collective knowledge: universal, task-agnostic priors [9]. Effectively capturing such universal priors
is integral to closing the sample-efficiency gap.

Owing to their ability to represent concepts and relations, knowledge graphs (KGs) are an effective
vehicle for modeling these priors [1, 30, 31]. These graph representations can capture shared structure
across tasks, allowing the agent to reuse information learned from one task and generalize efficiently
to others. Prior work in multi-task RL has emphasized the utility of using shared representations
across tasks [6, 7, 13, 27, 28, 29]. We seek to explore the intersection of these two complementary
approaches: using universal priors in multi-task settings to capture task-agnostic structure.

To best leverage universal priors, we desire a model with several critical properties. First, we believe
our approach should induce task invariant object representations that encode universal relationships
between objects rather than task-specific state information. Secondly, we prioritize parameter
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efficiency: our approach should scale to the hundreds of objects that characterize real-world, multi-
task settings. Lastly, we emphasize modularity: to be maximally useful, our embedding approach
should flexibly augment existing methods. To this end, we introduce a novel architecture that exploits
graph-based priors to solve hundreds of simultaneous tasks. We evaluate our approach on domains
with hundreds of relationships and observe robust, sample-efficient generalization. Our approach
offers a promising route to incorporating universal priors in multi-task RL (MTRL) domains.

2 Background

Taylor & Stone [27] identify that there are many different possible formulations for what constitutes
a multi-task reinforcement learning setting. For our purposes, we consider an MTRL environment to
comprise a broader “universe" defined by a set of states, consistent transition dynamics, and a single
set of actions. Each distinct task is defined by a unique reward function.

Many real world domains are best described as a collection of objects and their interactions. One
approach to modeling these environments is via object-oriented Markov decision processes (OO-
MDPs). Diuk et al. [8] extend Markov decision processes (MDPs) [20] by defining a collection of
classes and a set of attributes. The environment is composed of objects: specific instances of classes.
Our model simultaneously learns over multiple OO-MDPs that share objects and transition dynamics.

Given a collection of objects, a natural way to include prior knowledge is via a knowledge graph
(KG), a directed graph G = (V, E), where each vertex can represent an object in the environment and
each edge represents a relationship between two objects. A common approach is to store information
as a node embedding hv 2 Rk that is associated with a vertex v 2 V . Agents can utilize these
embeddings to reason about their environment at the level of objects.

GraphDQN [30] applies knowledge graphs and relational priors to generalize known relationships
across various objects to solve symbolic environments. The agent maintains node embeddings for
objects in the world, updating these representations using a combination of convolutional filters
over the state and a series of pooling, broadcast, and graph convolution operations [15] over the
knowledge graph. While GraphDQN achieves impressive, sample-efficient results in single-task
symbolic domains, we show that such an architecture cannot scale to domains with many tasks.

3 Graph Embedding Priors for Multi-task RL

In the multi-task setting, learning an embedding for objects using state information can result in
destructive interactions between different task-specific updates [29]. To efficiently scale up to domains
with many possible object relations, we introduce a model, GEM-RL, that encourages a task-invariant
object representation, jointly learning weights to combine node embeddings via a GCN-based encoder
(see Fig. 1) 1. In addition to improved parameter efficiency, GEM-RL’s simplicity and flexibility
render it ideal for use with abstract knowledge priors and on more complex, diverse MTRL tasks.

Our GCN-based encoder is initialized with a set of objects and an adjacency matrix that describes
the relationships between objects in our environment. We explore both random and DeepWalk
[19] initializations of our object embeddings (See Appendix). The encoder computes the mean of
the neighborhood node embeddings to generate the aggregated node embedding a(l)v . The encoder
then multiplies aggregated node embedding by a learnable weight matrix, then applies a non-
linear activation (ReLU) to yield the combined node embedding h(l+1)

v [15]. Concretely, a(l)v =

mean
⇣n

h(l)
u , u 2 N (v) [ {v}

o⌘
and h(l+1)

v = ReLU
⇣
W (l)a(l)v

⌘
, where each W (l) 2 Rk⇥k is a

learnable weight matrix, and N (v) represents the set of nodes connected to v by an edge. This is
followed by a linear layer, resulting in a set of object embeddings. In contrast to GraphDQN, these
object embeddings are not a function of state observations. Instead, each object embedding is only
a function of the learned node embedding and those of its neighbors. Then, we replace the object
symbol in the symbolic state with its object embedding vector. The resulting 3D embedded state is
passed into a set of convolutional and linear layers, which output Q(s, a) for a 2 A.2

1Code available: https://github.com/zacharyhorvitz/Hierarchical-Graph-Priors
2We separate state and inventory embeddings, passing them directly to the DQN head.
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Figure 1: Left: An example Symbolic Procgen environment. Following an optimal policy ⇡⇤, the
agent collects the right tool, navigate to the right block, use the tool, and collect the drop. Right:
Model architecture.

This architecture is flexible and can, in principle, sit atop any deep RL method, including actor-critic
or distributed methods [10, 18, 26]. In addition to modularity, our method of updating embeddings
encourages the model to learn general representations. Further, we strive to be conscious of parameter
count; our encoder is comparatively efficient, and it grows linearly with the number of distinct objects.

4 Experiments on Symbolic Procgen

Inspired by Malmo [14] and the Warehouse environments [25], we design a symbolic environment,
Symbolic Procgen, that allows us to adjust the number of objects and relations, and by extension,
the number of tasks. A Symbolic Procgen environment is initialized with tools and blocks. During
initialization, each block is assigned a single tool and one unique drop—a refined resource resulting
from ‘mining’ a block. The relationships between objects are stored in an environment graph, with
directed edges between related objects (tool ! block, block ! drop). Each episode, the agent is
randomly assigned a goal object that uniquely identifies a task. To solve each task, the agent must
navigate to the correct tool, use it on the correct block, and collect the resulting goal object.

We run experiments on a number of SymbolicProcgen t⇥ b configurations, varying the number of
tools t and blocks b. We compare our model against GraphDQN and several baseline models: a
CNN pixel-based architecture and a symbolic baseline with an embedding lookup (i.e. GEM-RL
without the GCN encoder). The graph-based approaches utilize the environment graph.3 GEM-RL
outperforms GraphDQN and CNN baseline on all domain sizes, and the encoder is indispensable for
larger domains. Additional experiments with noisy graphs demonstrate that our method’s performance
gracefully degrades as the prior becomes less reliable (See Appendix).

5 Related Work

Recent work on relational knowledge in RL has emphasized relational inductive biases coupled with
attention-based mechanisms [3]. With impressive results on complex environments like Starcraft
[21], this line of work shows that relational information can be successfully exploited in RL. These
methods focus on discovering relational structure from interactions with the environment, whereas we
aim to include such information as a prior, inspired by how humans approach unseen tasks. However,
these approaches could be combined, and we leave investigating the benefit of graph priors in learning
relational structure for future work.

Prior work has explored encoding information via graphical priors in specific settings. Yang et al.
[31] investigate using linguistic relations encoded in a graph—Scene Priors—for a visual navigation
task. The agent uses co-occurrence relations with a pretrained object detection model [12] to improve

3Additionally, we add the identity matrix to our environment graph to include self-loops for each node.
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Figure 2: (a) Results on scaling up domain sizes. Note that GEM-RL outperforms our two baselines:
CNN and GEM-RL without the GCN encoder. The relative boost provided by the GCN-encoder
dramatically increases in more complex domains. Additionally, DeepWalk based initializations
consistently improve performance. (b) Results comparing GraphDQN to GEM-RL on small domains.
Note that GraphDQN and CNN baselines require more samples to converge as complexity increases.

object search. However, their agent constructs its object representations from image states, and their
work remains to be extended to more general RL domains. We compare to another approach, used
by Vijay et al. [30], that uses graph convolution operations to structure the latent representation of a
DQN, but only examines single-task, symbolic domains.

Canonical MTRL agents do not incorporate graph information and do not operate on OO-MDPs.
IMPALA and PopArt [10, 13] are A3C-based agents designed to scale training across many machines
and optimize resource utilization. PopArt and DISTRAL [28] attempt to address the ‘distraction
dilemma’—a challenge in MTRL where certain tasks are prioritized by the agent over others—and
they present an excellent base for extensions to GEM-RL.

6 Discussion

Graph-based embedding priors provide a flexible, intuitive mechanism for encoding relational
knowledge. We introduce a novel and modular method, GEM-RL, designed to exploit relational
information for improved performance over many tasks with large numbers of objects, as well as
a new multi-task domain of variable complexity, Symbolic Procgen. Our approach demonstrably
outperforms competing methods, such as GraphDQN and CNN baselines.

We plan to use GEM-RL to investigate utilizing graphs from structured knowledge bases, like
ConceptNet or WordNet [11, 24], and from unstructured sources, like natural language. Another
promising direction is using actions in object relations, expanding the realm of possible common-
sense information to use as a prior. Additionally, exploring sample-efficiency gains in multi-task
domains with complex dynamics and rich observations is of great interest and practical relevance. We
hope to combine our work with existing object-detection/semantic segmentation methods to ground
objects in pixel-based observations.
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A Additional Experiments

A.1 Noise Ablation Results

Figure 3: Noise ablation results on an instance of Symbolic Procgen with 32 tools and 128 blocks.
Note the graceful degradation in performance as up to 50% of the graph has noise applied.

To investigate the robustness of the graphical prior, we performed two distinct ablations using noisy
graphs. First, we conducted a series of "remove" noise experiments, where we randomly selected k%
of the edges in our knowledge graph and removed these edges. This ablation tested how our method
performs when provided with an incomplete graphical prior.

Second, we conducted a series of "swap" noise experiments, where we randomly shuffled k% of
the edges connecting tools and blocks and blocks and drops. This ablation tested how our method
performs when provided with a partially incorrect graphical prior.

Our method performance degrades gracefully as we increase the ablation degree for both remove
and swap noise variants. Furthermore, for every ablation tier t 2 {0.05, 0.1, 0.25, 0.5}, we observe
that remove noise performance dominates swap noise performance. We hypothesize that swap noise,
unlike remove noise, introduces an incorrect prior which leads to elements of negative transfer. This
negative transfer takes additional experience to overcome. In contrast, increasing the degree of
remove noise decreases the degree of positive transfer induced by the graphical prior and does not
directly lead to negative transfer.

The knowledge graph can be utilized in myriad ways to encourage learning task-invariant object
representations. One of these mechanisms is using the graphical prior to construct informed object
embedding initializations. In this ablation, we focus only on DeepWalk node embeddings [19]. We
observe that DeepWalk embedding initializations decrease the sensitivity of all methods to noisy
graphs (both remove and swap noise), while also yielding benefits in sample efficiency. Further
ablations are required to investigate other initialization schemes.
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A.2 Full Small Experiments

Figure 4: Results on more small domains in Symbolic Procgen.
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A.3 Full GraphDQN Experiments

Figure 5: Results of GraphDQN for 25M steps on Symbolic Procgen.
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B Experimental Details

B.1 Architecture

model(
(body): Sequential(

(0): Conv2d(32, 32, kernel_size=(2, 2), stride=(1, 1))
(1): ReLU()

)
(head): Sequential(

(0): Linear(in_features=160, out_features=300, bias=True)
(1): ReLU()
(2): Linear(in_features=300, out_features=300, bias=True)
(3): ReLU()
(4): Linear(in_features=300, out_features=5, bias=True)

)
(gcn): GCN(

((0, 0)): Linear(in_features=32, out_features=32, bias=False)
((0, 1)): Linear(in_features=32, out_features=32, bias=False)
((0, 2)): Linear(in_features=32, out_features=32, bias=False)
(final_mapping): Linear(in_features=32, out_features=32, bias=True)

)
(embeds): Embedding([num_objects], 32)

)

B.2 Hyperparameters

Hyperparameter Value

batchsize 32

embedding size 32

gradient updates per step 1

target update param 5⇥ 10�3

gamma 5⇥ 0.99

warmup 100000

epsilon initial 1

epsilon final 0.05

epsilon linear decay length 1⇥ 106

double DQN update yes

Figure 6: Hyperparameters used for GEM-RL

We tuned the learning rate for GraphDQN and GEM-RL on Symbolic Procgen for each experimental
setting on our domain. A learning rate of 1.0⇥ 10�5 was used for the (2 tools, 4 blocks) and (4 tools,
8 blocks) settings, while a learning rate of 8.333⇥ 10�5 was used for all other experimental settings.

B.3 Symbolic Procgen

A Symbolic Procgen state comprises a 2⇥ 4 gridworld and two additional variables: the ‘inventory’
and ‘goal’. The bottom row of the grid is then populated with four objects in random order: the
block assigned to that drop, the tool required to break the block, one random tool, and one random
block. The agent has five possible actions: North, South, East, West, and Use Tool. The agent can
only collect tools and drop items. In order to convert a block to its drop, the agent must use the
correct tool on that block. As the agent moves about the gridworld, it can store a drop or tool in its
single inventory slot. The episode ends after a fixed number of steps, or when the the agent adds the
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goal object to its inventory. Every episode, one drop is randomly chosen as the ‘goal’. That object’s
corresponding block and that block’s tool, along with one random block and one random tool, are
added in random order to the bottom row of the gridworld.
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