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_ Disease Gene Identification

% Given a set of known targets for diseases, we aim to identify novel target
genes for known and new diseases
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< We formulate the problem as a link prediction task, where the goal is to
predict new links between disease and gene nodes of a knowledge graph

Our Framework
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[Predict novel disease-gene links and validate experimentally
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Our Knowledge Graph
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% Transformed a disease-gene graph, DisGeNET into DoidGeNET, a non-redundant version
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% Processed and combined 4 different biomedical databases, resulting in a heterogeneous
knowledge graph consisting of 8 edge types and 4 node types
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% The protein-disease edge type formed only 3.41% of
the total edges in the graph
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[ ] Target edge type for prediction

< Relation-weighted Link Prediction >

We propose a learnable relation-specific weight to adjust for the skewed distributions

We demonstrate our proposal on RotatE, a state-of-the-art method for link prediction

In the max-margin objective function, the relation-specific distance is scaled by a weight W_

The loss function can be written as the following:
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} < Training is carried out by optimizing for W_along with rest of the hyper-parameters

Relation-weighted Link Prediction for Disease Gene Identification
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Experimental Results
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< It helps to augment the graph with layers representing different biological processes

Variant hit@3o Mean Rank | Mean Percentile
DG 0.189 4995.65 72.77
DG + ST 0.287 2029.74 88.94
DG + ST + DG_uc 0.353 1467.84 91.64
DG + ST + DG_uc + DO 0.363 1256.69 92.84
DG + ST + DG_uc + DO + RT 0.375 1186.81 93.32

DG: DoidGeNET; ST: STRING; DG_uc: DG uncurated; DO: Disease Ontology;

% It helps to weigh the edge types in a heterogeneous graph

Variant hit@go Mean Rank | Mean Percentile
Original 0.368 1298.44 02.70
Our Method 0.375 1186.81 93.32
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< Our method outperforms other state-of-the-art methods

Method hit@3o Mean Rank | Mean Percentile
Random Walk 0.007 4597.91 72.78

Direct Neighborhood scoring 0.250 3339.61 80.24
DIAMOnD 0.336 NA NA

Our Method 0.375 1186.81 93.32

% Our method retrospectively identifies more targets in trials than Open Targets

Measured overlap between top 50 predictions and Trialtrove

Parkinson’s Crohn’s Schizophrenia
Open Targets 9 10 7
Our Method 14 22 10
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Future Work
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< Experimental validation of novel disease-gene predictions

< Augment our knowledge graph with additional layers
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