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Abstract

TACRED [44] is one of the largest and most widely used sentence-level relation
extraction datasets. However, a recent study [2] suggested that the dataset may
have substantial quality issues. In this paper, we address these concerns by: (i)
comprehensively studying the whole TACRED dataset, (ii) proposing and deploying
an improved crowd-sourcing strategy to re-annotate the TACRED dataset, and (iii)
thoroughly analyzing how correcting TACRED affects previously published results.
After re-annotation, we observe that 22.1% of TACRED labels are different and that
models evaluated on our revised dataset achieve an average f1-score improvement
of 13%. Additionally, we publicly release our revised dataset, Re-TACRED to
further enable reliable evaluation of relation extraction models.

1 Introduction

Many applications ranging from medical diagnostics to search engines rely on the ability to uncover
relationships between seemingly disparate concepts based on existing knowledge. Relation extraction
(RE) is a popular learning task aimed at extracting such relationships between concepts in plain
text. For example, given the sentence “John lives in Miami”, where “John” and “Miami” are the
sentence subject and object respectively, the objective of an RE method is to infer the correct relation,
PERSON:LIVES_IN , between them. TACRED [44], is one of the most widely used crowd-sourced RE
datasets and consists of 106,264 sentences of varied complexity. Although just three years-old, a
multitude of approaches have been proposed and evaluated using the dataset. Recently, methods have
converged at ∼71.5% f1-score on the test data, raising the question of whether we have reached the
maximum possible attainable performance on the TACRED dataset, and if so, why? [2] investigated
these questions by performing a comprehensive review of the 5,000 most misclassified TACRED
development and test split sentences among 49 existing RE methods. They observed that over 50%
of the sentences were labeled incorrectly, leading to an average model performance improvement of
over 8% after correcting these labels. However, the broader impact of their work is limited by two
key factors. First, they restricted their dataset revisions to a biased small sample of TACRED. Thus,
it is not clear whether their findings would be true for the whole TACRED dataset. Second, even after
revision, the majority of the TACRED test split was uncorrected, making it challenging to identify if
new errors made by the methods are primarily due to model capacity, data error, or a mixture of both.

In this paper, we address these shortcomings by performing a comprehensive re-annotation of the
entire TACRED dataset. Our contributions can be summarized as follows. First, we deploy an
improved and cost-efficient crowd-sourcing annotation strategy over the dataset. Our annotations
achieve an average agreement rate of 82.3% and inter-annotator Fleiss’ kappa of .77 (significantly
higher than the .54 kappa achieved when TACRED was created [44]). Second, we thoroughly compare
our revisions with the TACRED labels. Our revisions significantly improve model performance by an
average of 13% f1-score, and reveal new types of model errors obscured by the original TACRED
labels. Third, we publicly release our revised dataset labels.
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2 Background

Each TACRED instance consists of a sentence and two non-overlapping contiguous spans representing
a subject and an object, each with pre-assigned “types” (e.g., PERSON or CITY). For example, consider
the sentence “John Doe was born in Miami.” In this case, the subject is a PERSON and the object a
CITY. Each instance is assigned one of 42 labels that describes the relationship between the subject
and the object. These labels consist of 41 relations that describe the existence of some relationship
between the two (e.g., CITY_OF_BIRTH), and a special NO_RELATION predicate to indicate the absence
of a relationship. Moreover, all relations are typed: they only apply to a specific set of subject and
object types. There are a total of 28 subject-object types pairs in TACRED.

TACRED instance labels were assigned using the Amazon Mechanical Turk (AMT) crowdsourcing
platform. For each sentence, AMT workers were asked to select the appropriate label from a set of
suggestions between highlighted subjects and objects. The suggestions included all labels that were
compatible with the subject and object types, along with the special NO_RELATION label.

2.1 TACRED Quality

[44] assumed an acceptable level of label quality based on an observed high annotation accuracy of
93.3% from a random sample of 300 instances, and a Fleiss’ Kappa of .54 over 761 randomly selected
annotation pairs. However, recent work suggests that the annotation quality may be significantly
lower than previously estimated. [2] manually verified the labels for the 5,000 most miss-classified
sentences from the TACRED test and validation splits over 49 existing relation extraction methods
via crowd-sourcing. While similar to [44], their annotation task exhibited two primary differences to
improve quality. First, only workers trained in general linguistics and who passed a trial exam labeling
500 hand-picked TACRED sentences were allowed to participate. Second, they extended the label
suggestion set to include predictions made by pre-trained relation extraction models. After annotation,
they observed that over 50% of TACRED labels in their sample were incorrect. Their revised dataset
improved model performance by an average of 8.1% f1-score, suggesting that TACRED model
evaluation may lead to inaccurate conclusions. Moreover, their Fleiss Kappa were .80 and .87 for the
validation and test sets, showing a high annotation quality.

While [2] demonstrated some of the shortcomings of the TACRED dataset, the broader impact of
their work is restricted by both a small and biased sample set, and an analysis performed over a
predominately uncorrected TACRED test dataset. Although correcting this small set of labels yielded
significant impact on the evaluation of existing relation extraction models, it is difficult to generalize
the results to the full dataset. Additionally, it is not clear if remaining model errors are due to their
capability or further underlying data inaccuracies. These disadvantages raise several questions that
are difficult to answer with their study. Can we design a cost-effective yet robust crowdsourced
annotation task in order to correct the whole dataset and allow the research community to benefit
from more accurate evaluations of novel methods? Can we expect similar performance improvements
when re-annotating the whole dataset? How do model errors change under a revised dataset? These
questions are difficult to answer based on the work of [2] and are our motivation for our work.

3 TACRED Revision

Labeling TACRED is challenging due to its large size and complex structure, making it difficult for
crowd-sourced workers to identify the right relation among 42 choices. Thus, we initially reduce
complexity by following an annotation template similar to [44, 2]. We first group TACRED sentences
based on their corresponding subject and object types (e.g., “Jane loves her ring” is grouped
together with sentences whose subject and object both have type PERSON), and assign each group
a filtered candidate set of type-compatible labels (e.g., relations between people), and the special
NO_RELATION label. Workers are then asked to choose the appropriate label for each sentence from
the associated candidate set. However, we extend this template in three directions described below.

Wrong Type Handling. A preliminary analysis of 1,000 sentences revealed that 5% had incorrect
subject and/or object type assignments (e.g., “Thomas More Law Center” tagged as PERSON instead
of ORGANIZATION). This is problematic because such instances are placed in incorrect sentence
groups and are assigned type-incompatible candidate labels. Therefore, if the types are wrong,
workers would be forced to assign an incorrect label (correct relations must be type-compatible).
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We address this issue in two parts. First, we merge sentence groups whose types are most confused
with one another into eight “super-clusters”, and define their candidate relation sets as the union
of all associated sentence group candidate sets. This increases the probability that type-compatible
relations exist for incorrectly-typed sentences. Second, we extend each cluster candidate set with
an additional WRONG_TYPE relation. This enables workers to avoid selecting an incorrect label when
all candidate relations are type-incompatible for sentences. We address these latter sentences by
iteratively assigning them to other super-clusters until they are correctly annotated. We refer readers
to Appendix A.1 for further details.

Label Definition Refinement. Similar to [44, 2], we defined many labels according to the TAC
KBP1 documentation. However, we observed that in certain cases the documentation was unintuitive
and vague, confusing workers and resulting in poor annotation quality. Thus, we alter affected
relation definitions to be better suited for the TACRED RE task. Overall, we refine 20 labels, and
their refinements can be categorized into four groups: (i) explicitly enabling identity relationships
between subjects and objects, (ii) merging significantly similar labels, (iii) relaxing challenging
criteria, and (iv) enforcing label mutual-exclusivity (TACRED is a single-label RE dataset). Appendix
A.2 describes each of these categories in further detail.

Quality Assurance. In order to obtain high annotation quality, we employ a two step quality
assurance process similar to [22, 42] for our annotators. First, we specify three prerequisite criteria
that workers must satisfy before annotating our dataset: (i) candidates must have had at least 500
previous tasks approved on AMT, (ii) have an overall approval rate

( # Annotations Approved
# Annotations Completed

)
≥ 95%, and

(iii) pass custom “qualification tests” for each sentence super-cluster they annotate. The first two
filters ensure that our annotators are both experienced and reliable. In conjunction, the latter exam
gauges potential worker quality over our instances and specializes/trains them for each super-cluster
annotation task. Second, following [42], for every five sentences a worker annotates, we include one
control instance whose correct label is known. This enables us to track worker quality throughout
annotation, and remove those who under-perform. Similar to [42], we only accept responses from
annotators who correctly answer at least 80% of our control instances (separately computed for each
super-cluster). On average, this eliminated approximately 10% of the annotators, and significantly
improved the quality of the collected data. Note that, in aggregate we used approximately 2,000
unique control sentences for the annotation of the full TACRED dataset.

Our revised labels result in an 82.3% agreement rate and Fleiss Kappa of .77 between annotators
throughout the full dataset, indicating high annotation quality. These metrics are significantly better
than those reported by [44], which observed a Fleiss’ Kappa of .54 across 761 sentences. We term
the dataset resultant from these labels Re-TACRED.

4 TACRED and Re-TACRED Comparison

We additionally analyze the label distributional differences between Re-TACRED and TACRED, and
examine the performance impact of Re-TACRED over TACRED. We perform our analysis using
three existing relation extraction methods: PALSTM[44], C-GCN[45], and SpanBERT[17] —a State-
of-the-Art model. We train all our TACRED-based models using the reported parameters by their
respective contributors [44, 45, 17]. All hyperparemeter details for models trained on Re-TACRED
can be found in Appendix B.1 and in our code repository2. Due to space restrictions, we summarize
our key observations in this section, and leave further extensive details in Appendix B.

Distribution Differences. Overall, our revised labels disagree with 22.1% of TACRED sentences.
Of these, 74.3% correspond to NO_RELATION that are switched to one of the other relations and 20.0%
correspond to other relations switching to NO_RELATION. The remaining 5.7% correspond to switching
between different non-negative relations.

Overall Impact. We present the evaluation results of the three models over TACRED and Re-
TACRED in table 1. In addition, we record the improvement percentages of models evaluated on
Re-TACRED have over those assessed on TACRED. All results were reported using micro-averaged
f1-scores from the model with the median validation f1-score over five independent runs, as in prior
literature [44, 45, 10]. Notably, we observe significant improvements across every metric for each

1https://tac.nist.gov/2017/KBP/index.html
2https://github.com/gstoica27/Re-TACRED.git
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Table 1: Results for multiple RE models. We report result for TACRED obtained using our own
experiments that may differ slightly from previously reported numbers. “Change %” indicates the
performance difference between methods evaluated on TACRED and Re-TACRED.

Dataset Metric Models
PALSTM C-GCN SpanBERT

TACRED
Precision 68.1 68.5 70.1
Recall 64.5 64.4 69.2
F1 66.2 66.3 69.7

Re-TACRED
Precision 78.3 79.7 84.6
Recall 77.6 78.5 83.9
F1 77.9 79.1 84.2

Change %
Precision +12.2 +11.2 +14.5
Recall +13.1 +14.1 +14.7
F1 +11.7 +12.8 +14.5

of the three models. SpanBERT achieves the largest improvement in both f1-measure and precision
by 14.5%, and a 14.7% improvement in recall. Interestingly, although PALSTM and C-GCN have
similar f1-score increases, their recall and precision enhancements are complementary. C-GCN has
larger recall improvement, while PALSTM displays a larger precision increase. In contrast to C-GCN
and PALSTM, SpanBERT observes a larger improvement in all three metrics. These asymmetric
model behavior differences indicate that improvement is not simply due to a revision offset or score
scaling; instead, it is dependent on the characteristics of each model at reasoning over diverse data.
In addition, these results suggest that existing models are under-evaluated on TACRED, and that their
true capabilities—and performance margins—may be significantly better than reported.

Effect of Refined Labels. We observe significant performance improvements by as much as 73.5%
over our four refined label categories mentioned in Section 3. Table 3 in Appendix B.3 shows the
results from each of the three models. Importantly, while PALSTM and C-GCN yield complementary
performances over each category on TACRED, C-GCN outperforms PALSTM on every category in
Re-TACRED. Moreover, SpanBERT achieves significantly better f1-scores by at least 7.2% across
every refinement category on Re-TACRED compared to TACRED. We attribute these improvements
to our explicitly addressing diverse TACRED label nuances.

Effect of Non-Refined Labels. We also examine how models differ based on our non-refined label
re-annotations. Non-refined relations are any for which we did not alter the TAC KBP relation
definitions (i.e. the remaining 42-20=22 relations). Table 4 in Appendix B.4 shows our results.
Overall, we observe similar trends as in our refined-labels: all methods significantly improve by as
much as 9.1% f1-score on Re-TACRED compared to TACRED. Moreover, similar to the findings of
[2], TACRED-trained models achieve up to 1.8% better f1-score when evaluated on Re-TACRED
than on TACRED, illustrating how TACRED may be under-estimating model performance.

Re-TACRED Error Correction. In addition, we study how model errors change between TACRED
and Re-TACRED. We conduct this analysis by training two separate SpanBERT instances on TA-
CRED and Re-TACRED respectively, and evaluate both on the Re-TACRED test split. We then
identify which sentences TACRED-trained SpanBERT classifies incorrectly, while Re-TACRED-
trained SpanBERT answers correctly. Of these, 82.2% are due to TACRED-trained SpanBERT
inferring NO_RELATION when the gold label is positive, 14.4% occur when the model predicts a
positive relation when the correct label is negative, and the remaining 3.4% of errors arise when
the method classifies the incorrect positive label. Table 5 in Appendix B.5 presents five sentences
highlighting these errors.

5 Conclusion

We addressed the shortcomings of the TACRED dataset by performing a comprehensive verification
of the complete dataset using crowd-sourcing. Our annotation strategy extended previous TACRED-
label studies by accounting for type errors, label definition ambiguities, and additional quality
control. Our results show significantly higher Fleiss’ Kappa (.77) than original dataset annotations
(.54), suggesting high annotation reliability. Moreover, our revised labels yield an average model
improvement of 13% f1-score, and reveal new error types obscured by the original labels.
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Broader Impact

Relation extraction (RE) plays a critical role in many recent innovations ranging from consumer
products such as personal assistants and search engines, to enterprise operations such as automatic
medical diagnostics. However, RE systems are only as powerful as their training-and-evaluation
datasets. To this end, we propose a comprehensive revision addressing the shortcomings of one of
the most widely used crowd-sourced and large (over 100,000 examples) RE datasets. Generated via
crowd-sourcing, our new dataset exhibits significantly higher label quality than its predecessor. This
higher quality translates to significantly better model performance than observed by the previous
dataset, and uncovers new previously obscured model error types. Thus, our dataset provides
an enhanced environment for developing RE systems by enabling informative and reliable model
evaluation. In addition, our dataset provides an example for how to effectively use crowd-sourcing
platforms to generate reliable data. We hope that the annotation strategies presented in this work may
aid future research involving crowd-sourced data collection efforts.
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Appendices
A TACRED Revision Continued

Table 2: Mappings between super-clusters and sentence groups. Sentence groups are defined by
the pair, (SUBJECT_TYPE, OBJECT_TYPE), which describes the subject and object type of all sentences
in the group. The leftmost column denotes each super-cluster name. The middle column lists the
two possible subject types (ORGANIZATION and PERSON), while the rightmost column shows the list
of object types whose pairing with the corresponding subject type is an element of the respective
super-cluster. For instance, (PERSON, TITLE) represents the sentence group where all sentence subject
types are PERSON and all object types are TITLE. From the table, this group is an element of the
per2miscmulti super-cluster.

Super-Cluster Subject Type Object Types
org2miscmulti

ORGANIZATION

URL, DATE, NUMBER, RELIGION, IDEOLOGY, MISC
org2locmulti CITY, COUNTRY, STATE_OR_PROVINCE, LOCATION

org2org ORGANIZATION
org2per PERSON

per2miscmulti

PERSON

TITLE, DATE, CRIMINAL_CHARGE, RELIGION, NUMBER, CAUSE_OF_DEATH, DURATION, MISC
per2locmulti NATIONALITY, COUNTRY, STATE_OR_PROVINCE, CITY, LOCATION

per2org ORGANIZATION
per2per PERSON

A.1 Wrong Type Handling

Our final super-clusters are show in Table 2. Each cluster contains at least one sentence group (i.e.,
sentences that correspond to a specific subject-object type pair), every sentence group belongs to a
super-cluster, and there is not any group overlap between super-cluster.

However, our modified “super-cluster”-based sentence aggregation also increases the size of the
candidate label set presented to annotators during annotation. While in many cases the resultant set is
reasonably sized (under 9 relations), a minority of clusters have very large label sets, containing up
to 14 relations. Large label sets can make it challenging for annotators to accurately and efficiently
choose the most appropriate answer. To ensure that the candidate sets we present to the annotators are
not too large, we impose a maximum size of 9 relations for each sentence. Clusters with corresponding
label sets of size less than 9 are left intact and are annotated in a single-stage fashion, Larger clusters,
however, are broken down into sub-clusters and are annotated using a multi-stage process. The
single-stage annotation process consists of asking a single question for each sentence, where the
candidate set of relations contains all of the corresponding super-cluster relations. The multi-stage
annotation process consists of splitting a large cluster’s label set into subsets such that each subset
has fewer relations than our threshold (i.e., 9). Then, one of these subsets is selected and annotated
in the same way as for the single-stage process. Afterwards, all sentences assigned to the special
WRONG_TYPE relation (indicating that none of the relations in the candidate subset was plausible) are
re-annotated using a different subset of relations. This process is repeated until either all of the subsets
are exhausted, or all of the sentences are annotated with labels other than the special WRONG_TYPE
relation.

A.2 Relation Definitions Refinement

Category (i) — Explicitly enabling identity relationships. We observed substantial label inconsis-
tency in TACRED sentences whose subject and object refer to the same person (e.g., “Holly shows
off a few pieces of her jewelry line here,” where “Holly” is the subject and “her” is the ob-
ject. Such sentences were inconsistently tagged as either PERSON:OTHER_FAMILY or NO_RELATION.
Despite accounting for nearly 10% of TACRED, these sentences are difficult to annotate because
they lie in a gray zone of the TAC KBP label guidelines: they are neither explicitly allowed nor disal-
lowed. To this end, we opted to include these types of relationships in the PERSON:ALTERNATE_NAMES
relation. Namely, we extended the definition of PERSON:ALTERNATE_NAMES to also explicitly account
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for references to the same person, instead of only references using different names. Furthermore, in
order to avoid confusion and incompatibilities between TACRED and Re-TACRED (our improved
TACRED dataset), we renamed the PERSON:ALTERNATE_NAMES to PERSON:IDENTITY.

Category (ii) — Merging very similar labels: The relations ORGANIZATION:PARENTS and
ORGANIZATION:MEMBER_OF, and their corresponding inverses, ORGANIZATION:SUBSIDIARIES and
ORGANIZATION:MEMBERS, describe the relationship where the subject organization is a member
(or part) of the object organization, and its inverse. Their sole distinction lies in the fact that
ORGANIZATION:MEMBER_OF indicates an autonomous relationship between the subject and the object
(i.e., the subject is a member of the object by choice), while ORGANIZATION:PARENTS indicates a
dependent link where the subject is subsumed by the object (e.g., “LinkedIn” and “Microsoft”), and
similarly for the second pair. While such fine-grained distinctions may be viable in a document-level
relation extraction setting—The TAC KBP evaluations were defined as document-level relation
extraction tasks—they can be extremely challenging (even impossible) at the sentence-level, where
significantly less information is available. In fact, in multiple of the cases that we manually re-
viewed, the correct label could only be determined through a search on the Internet, rather than
by relying on the provided sentences. Thus, we decided to merge the two pairs of relations into
ORGANIZATION:MEMBER_OF and ORGANIZATION:MEMBERS, respectively.

Category (iii) — Relaxing challenging criteria: We also made alterations to ORGANIZATION:-
LOCATION_OF_HEADQUARTERS relations, where LOCATION can be substituted for any type of location
(e.g., CITY). Our initial annotation process for these relations resulted in substantial confusion due to
syntactic ambiguities present throughout the data (e.g., does the phrase “ORGANIZATION from CITY”
always imply that the specified organization is headquartered in the specified city? Based on the TAC
KBP guidelines it can, but determining whether it does turned out to be particularly challenging for
the annotators). Based on this observation, we decided to generalize the corresponding relation defi-
nitions to represent any location where an organization has a branch or office (rather than specifically
where it is headquartered).

Category (iv) — Enforcing label mutual-exclusivity: Although TACRED is defined as a single-label
relation extraction dataset (i.e., the relations are all mutually-exclusive), certain sentences can fit
multiple relations. This is especially common among sentences which invoke a residential rela-
tionship between people and locations. For example, both relations PERSON:CITIES_OF_RESIDENCE
and PERSON:CITY_OF_BIRTH apply to the sentence “He is a native of Potomac, Maryland.” We
account for these cases by altering the relation definitions to create clear boundaries for when one re-
lation is more appropriate over another (e.g., any mention of the word “native” or any of its synonyms
cannot be assigned a residence relation, such as PERSON:CITIES_OF_RESIDENCE).

A.3 Foreign Language Removal

In addition, we noticed that 1,058 TACRED sentences were not written in English (we automated
this detection process by using the FastText [18] language identification model). Due to TACRED
being defined in the English Language, we removed these sentences from the dataset, leaving us with
105,206 sentences.

B TACRED and Re-TACRED Comparison Continued

B.1 Model Hyperparameters

We train all our TACRED-based models using the reported hyperparameters by their respective
contributors. All hyperparameter details for our Re-TACRED-based methods can be found below.
Additionally, all code required to reproduce our results and our new dataset can be found in our
repository at https://github.com/gstoica27/Re-TACRED.git. We train our PALSTM and
C-GCN models on a single Nvidia Titan X GPU, and utilized a single Nvidia Tesla V100 GPU to
train SpanBERT.

Re-TACRED PALSTM. We perform an extensive grid-search over LSTM hidden dimension sizes
from {100, 150, 200, 250, 300}, LSTM depth of {1, 2, 3}, word dropout from {0.0, 0.01, 0.04, 0.1,
0.25, .5}, and position-encoding dimension size among {15, 20, 25, 30, 50, 75, 100}. However, we
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observe the best performance with the hyperparameters reported by [44]. In addition, we employ the
equivalent training strategy as they report in [44] (detailed under Appendix B of their publication).

Re-TACRED C-GCN. Similar to our observations experimenting with PALSTM, we find that
keeping the majority of hyperparemeters equivalent to those reported by [45] yield the best results.
The sole parameter we alter is increasing the residual neural network hidden dimension from 200
to 300. In addition, we use the same training procedure as [45] (described in Appendix A of their
publication).

Re-TACRED SpanBERT. For SpanBERT, we perform a grid-search over learning rate sizes in
{1e-6, 2e-6, 2e-5} and warm-up proportions in {.1, .2}. However, we observe the best performance
using the reported parameters by [17]. We refer readers to [17] (detailed in Section 4.2 and Appendix
B in their publication) for further details on training strategy.

B.2 Distribution Differences

In addition to revising more than 22% of TACRED labels, we observe significant distributional al-
terations between relations. For instance, we observed that 41.8% more sentences are labeled
with PERSON:CITY_OF_BIRTH than in the original dataset. Of these, 55.2% were originally la-
beled as PERSON:CITIES_OF_RESIDENCE, illustrating the effect of improved label definitions. More-
over, we observed a 75.7% average increase in labels describing organizations in locations (e.g.,
ORGANIZATION:CITY_OF_HEADQUARTERS). Of these revisions, over 96% were originally labeled as
NO_RELATION. We attribute this influx of assignments primarily due to our changes in the respective
relation definitions described in Section 3, as well as our efforts to better handle wrong assignments
of subject and object types.

While our revisions increase the presence of many labels, they also substantially de-
crease the presence of several others. For instance, we observed the largest reduction in
PERSON:CITIES_OF_RESIDENCE, where 44.5% of the sentences were re-annotated with a different
label. Interestingly, this complements our aforementioned increase in sentences labeled with
PERSON:CITY_OF_BIRTH, suggesting a high rate of confusion between the two in the original
TACRED dataset. This pattern is also mirrored for the PERSON:COUNTRIES_OF_RESIDENCE
and PERSON:STATES_OR_PROVINCES_OF_RESIDENCE relations which changed to the
PERSON:COUNTRIES_OF_BIRTH relation and the PERSON:STATES_OR_PROVINCES_OF_BIRTH rela-
tion, respectively. Additionally, we found a 39.9% decrease in sentences labeled with the
PERSON:OTHER_FAMILY. We attribute this decrease due to our moving sentences with the
PERSON:IDENTITY relation.

Table 3: Micro-averaged f1-score for all our refined labels in TACRED and Re-TACRED. Categories
are defined as described in Appendix A.2. In addition, Re-TACRED performance improvements are
listed for each model under the “Change %” rows.

Model Dataset Refined Labels
Category (i) Category (ii) Category (iii) Category (iv)

PALSTM
TACRED 46.7 21.2 55.9 51.9
Re-TACRED 87.6 48.8 68.8 53.4
Change % +30.9 +27.6 +12.9 +1.5

C-GCN
TACRED 14.6 22.7 56.7 51.5
Re-TACRED 88.1 51.9 73.7 54.2
Change % +73.5 +29.2 +17.0 +2.7

SpanBERT
TACRED 44.1 51.9 66.8 55.9
Re-TACRED 91.7 65.1 74.0 69.8
Change % +56.6 +13.2 +7.2 +13.9

B.3 Effect of Refined Labels.

Table 3 reports the micro-averaged f1-scores for each refined-category on TACRED and Re-TACRED.
Our refinements are defined as Section A.2. Overall, our label refinements yield significant per-
formance improvements across all models by as much as 73.5%. While PALSTM and C-GCN
performances are difficult to distinguish on TACRED, C-GCN exhibits substantially better perfor-
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Table 4: Results for multiple RE models (leftmost column) on different train-and-evaluation
combinations (represented by the second and third columns). The remaining columns show metric
results.

Model Train Split Test Split Metrics
F1 Precision Recall

PALSTM

TACREDtrain TACREDtest 72.3 71.3 73.3
TACREDtrain Re-TACREDtest 73.3 76.7 70.2
Re-TACREDtrain TACREDtest 68.3 65.9 70.9
Re-TACREDtrain Re-TACREDtest 75.9 75.8 76.1

C-GCN

TACREDtrain TACREDtest 72.6 71.1 74.3
TACREDtrain Re-TACREDtest 73.2 76.0 70.6
Re-TACREDtrain TACREDtest 69.2 68.5 69.8
Re-TACREDtrain Re-TACREDtest 77.3 78.2 76.5

SpanBERT

TACREDtrain TACREDtest 75.0 74.7 75.3
TACREDtrain Re-TACREDtest 76.8 81.2 72.8
Re-TACREDtrain TACREDtest 74.1 70.9 77.7
Re-TACREDtrain Re-TACREDtest 84.1 85.0 83.1

mance than PALSTM after label refinement. Similarly, SpanBERT achieves significantly better
f1-scores, by at least 7.2% in every category. These results highlight the added clarity our refinements
have of labels. All methods achieve the largest gain in category (i) refinements. This indicates that
their robustness at detecting same-person relationships is significantly higher than could be observed
in TACRED. Interestingly, both C-GCN and PALSTM exhibit very small improvement on category
(iv) refinements. We hypothesize that this is due to the complexity of “residence” relations within
this group. Namely, characterizations of residence are diverse in the TAC KBP documentation. For
instance, “grew up", “lives", “has home", “from", etc. . . are just a few of many valid residence indica-
tions. Additionally, we observe significant improvements in category (ii) refinements, illustrating
their difficulties in distinguishing between the subtle label differences in each group. By addressing
these nuances, we observe significant f1-score increase on Re-TACRED.

B.4 Effect of Non-Refined Labels

Table 4 shows the results of our study investigating the performance differences between TACRED
and Re-TACRED over non-refined labels. We conduct this analysis by comparing model performance
over different combinations of train and test splits from TACRED and Re-TACRED. We denote
train splits using [·]train and test splits using [·]test, where [·] is either TACRED or Re-TACRED
(e.g., TACREDtrain). All models are then trained on TACREDtrain or Re-TACREDtrain, and
evaluated on TACREDtest or Re-TACREDtest.

The results show several interesting differences between TACRED and Re-TACRED. First, all
methods trained and evaluated on TACRED obtain significantly higher performance on the non-
refined labels than over the full label set. We attribute this increase to the fact that these relations
are less ambiguous compared than the refined ones. Second, methods trained on TACREDtrain
achieve better performance on Re-TACREDtest than on TACREDtest. This is consistent with the
findings in [2], and suggests that TACRED may be under-estimating model performance, and large
improvements can be obtained simply by evaluating models on higher quality annotations. Third,
methods trained on Re-TACREDtrain and evaluated on TACREDtest perform worse than those evaluated
on Re-TACREDtest. A deeper inspection of the data reveals that such models exhibit significantly
fewer correct positively labeled predictions in TACREDtest than in Re-TACREDtest, resulting in
substantially lower scores. For instance, SpanBERT trained on Re-TACREDtrain exhibits 16.5% fewer
correct positively labeled instances in TACREDtest compared to Re-TACREDtest. This highlights the
effects of our label changes described in Section 4: many positively labeled sentences in Re-TACRED
are either negatively labeled or assigned another positive relation in TACRED. Fourth, models
trained and evaluated on Re-TACRED perform significantly better than any other combination. Thus,
while methods trained on TACREDtrain achieve performance boosts when testing on Re-TACREDtest
(compared to evaluating on TACREDtest), training on Re-TACREDtrain is critical to achieving the
strongest performance on Re-TACREDtest.
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Table 5: Five handpicked sentences from the Re-TACRED test split that a TACRED-trained
SpanBERT model misclassifies but a Re-TACRED-trained SpanBERT method correctly classifies.
Sentence subjects and objects are defined as in Section 1, and the complete TACRED-trained
SpanBERT predictions and gold labels are provided. ORG represents the ORGANIZATION type and PER
denotes the PERSON type.

Sentence TACRED Prediction Correct Label
“...his posts as Cephalon’s chairman and chief executive." NO_RELATION PER:EMPLOYEE_OF
“...Pakistani journalist and Taliban expert Ahmed Rashid,..." NO_RELATION PER:TITLE
“...National Taiwan Symphony Orchestra (NTSO) ...an NTSO..." NO_RELATION ORG:ALTERNATE_NAMES

“His therapist told him to politely decline, ‘which helped." PER:TITLE NO_RELATION

“...her stepchildren, Susan, ..., Stephen and Maggie Mailer; ...” PER:SIBLINGS PER:CHILDREN

Table 6: Micro-averaged f1-score for each category in TACRED and Re-TACRED. PER stands for
PERSON and ORG for ORGANIZATION.

Model Dataset Categories
PER:* ORG:* PER:ORG ORG:PER PER:PER ORG:ORG

PALSTM
TACRED 66.8 65.2 65.3 72.6 59.9 59.3
Re-TACRED 79.0 74.4 62.9 85.1 85.2 70.3
Change % +12.2 +8.8 -2.4 +14.3 +25.3 +11.0

C-GCN
TACRED 66.5 65.9 66.4 72.2 49.9 61.6
Re-TACRED 79.9 76.7 65.3 85.3 85.3 72.2
Change % +12.6 +10.6 +8.9 +13.1 +35.4 +10.6

SpanBERT
TACRED 69.7 69.5 68.9 74.8 61.2 68.1
Re-TACRED 85.6 80.8 78.6 88.6 88.8 79.0
Change % +15.9 +11.3 +9.7 +13.8 +7.6 +10.9

B.5 Re-TACRED Error Correction

Table 5 shows several sentences highlighting the types of prediction errors TACRED-trained Span-
BERT makes that Re-TACRED trained SpanBERT is able to correct for. Based on the observations
described in Section 4, we argue that TACRED-trained SpanBERT’s erroneous NO_RELATION pre-
dictions are primarily due to implicit negative bias TACRED-trained methods have as a result of
TACRED’s severe NO_RELATION data skew (79.6% of sentences are negatively labeled). In contrast,
Re-TACRED trained SpanBERT is able to better recognize instances where NO_RELATION) is not ap-
propriate, potentially due to Re-TACRED containing substantially fewer negatively labeled instances
(68.0%).

B.6 Performance Change Across Label Types.

To better understand the overall impact of Re-TACRED, we also analyze model quality over several
relation categories between TACRED and Re-TACRED. Each category examines particular relation
types, and is defined similar to [2]. Namely, PER:* and ORG:* represents all relations whose subject
types are PERSON and ORGANIZATION respectively, while those denoted by X:Y symbolize relations
whose subject type is X and object type is Y. We choose these categories due to the diversity of
specific relations they represent, and their overall coverage of the relation-space. For each category,
we compute the micro-averaged f1-score based on the scores and supports from its relations. We
report our results in Table 6.

The results indicate that C-GCN and PALSTM exhibit a complementary relationship over many
categories with TACRED labels. While C-GCN beats PALSTM in ORGANIZATION:*, the reverse is true
with PERSON:*. Moreover, PALSTM significantly outperforms C-GCN by 10% on PERSON:PERSON
relationships. However, this compatibility disappears when the two are compared on our revised
dataset. Notably, C-GCN outscores PALSTM in every category. Thus, while TACRED paints these
methods as very being comparable, Re-TACRED reveals that C-GCN is a much stronger model.
SpanBERT consistently beats PALSTM and C-GCN in both TACRED and Re-TACRED evaluations,
illustrating its robustness.
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