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Abstract

We introduce a biomedical information extraction (IE) pipeline that extracts bio-
logical relationships from text and demonstrate that its components, such as named
entity recognition (NER) and relation extraction (RE), outperform state-of-the-
art in BioNLP. We apply it to tens of millions of PubMed abstracts to extract
protein-protein interactions (PPIs) and augment these extractions to a biomedical
knowledge graph that already contains PPIs extracted from STRING, the leading
structured PPI database. We show that, despite already containing PPIs from an
established structured source, augmenting our own IE-based extractions to the
graph allows us to predict novel disease-gene associations with a 20% relative
increase in hit@30, an important step towards developing drug targets for uncured
diseases.

1 Introduction

Understanding diseases and developing curative therapies requires extracting and synthesizing
relevant knowledge from vast swaths of biomedical information. However, with the exponential
growth of scientific publications over the past several decades [1], it has become increasingly difficult
for researchers to keep up with them. Moreover, most biomedical information is only disseminated
via unstructured text, which is not amenable to most computational methods [2]. Thus, there is a
growing need for scalable methods that can both extract relevant knowledge from unstructured text
and synthesize it to infer novel biomedical discoveries.

To fill this need, we build an end-to-end biomedical IE pipeline [2, 3, 4] by leveraging SciSpacy
[5], the most modern and actively developed open-source BioNLP library, and customizing its NER
and RE components via transfer learning and BioBERT [6, 7]. We demonstrate that our pipeline
outperforms the existing state-of-the-art (SOTA) for biomedical IE, such as PubTator Central [8], its
RE extensions [9], and SciSpacy [5] itself.

We then run our pipeline on the PubMed [10] corpus, the largest repository of biomedical abstracts,
and extract protein-protein interactions (PPI). Even though our pipeline can easily be trained to extract
any relationship, we focus on PPIs because our understanding of them is only partially complete
[11, 12, 13], they play an important role in identifying novel disease-gene associations [14], and there
is already an established structured PPI database called STRING [15] that allows us to benchmark
our extractions.

Finally, we augment our IE-based PPIs to a knowledge graph that already contains STRING-based
PPIs and demonstrate that the augmentation yields a 20% relative increase in hit@30 for predicting
novel disease-gene associations. Even though biomedical IE pipelines have previously been evaluated
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Figure 1: A high-level overview of our IE pipeline. We only display the single candidate relation (ARAP2,
ARF6) for simplicity although three candidate relations are present.

in downstream link prediction tasks when the IE-based extractions were the sole source of the graph
[16, 17], to the best of our knowledge, we are the first to show a lift in a setting where the knowledge
graph is already populated by an established structured database that contains the same relation type.

Increasing predictive accuracy in such a difficult setting demonstrates the quality of our biomedical IE
pipeline, which is specifically designed to require only a small amount of training data to extract any
biomedical relationship, and moves us one step closer towards developing drug targets for uncured
diseases.

2 Biomedical Information Extraction

In Figure 1, we provide an overview of our biomedical IE pipeline that we train and evaluate on PPI
data annotated by in-house biologists. In the following subsections we review how we configured the
pipeline for biomedical text and show how each component outperforms its leading competitor in
BioNLP.

2.1 Named Entity Recognition (NER)

System Precision Recall F1

Our Model 78.41 73.87 76.08
PubTator 58.96 49.20 45.76
ScispaCy 37.81 57.96 53.64

Table 1: NER Test Results

We train our NER model using SpaCy [18], which
we customize further via ScispaCy’s [5] word vectors
pre-trained on biomedical text. Our training dataset
consists of ~2000 PubMed abstracts tagged with pro-
teins. We enforce strict annotation rules during the
labeling process to help disambiguate unclear protein
references, a task that we found other NER datasets
do not accomplish effectively given the complex na-
ture of biomedical literature. We then compare our
model’s performance on the test set against two of the leading biomedical NER systems: PubTator
Central [8], a web service that performs NER on PubMed abstracts, and ScispaCy [5], which provides
its own protein NER model. As seen in Table 1, our model outperforms both of them.

2.2 Relation Extraction (RE)

For training and evaluating our RE model, we automatically annotate a separate set of ~2000 PubMed
abstracts using our NER model, generate relation candidates between pairs of tagged proteins, and
manually annotate whether a given candidate contains an interaction. Using our NER model for
annotation ensures that our RE model is trained and evaluated based on the same data distribution it
handles in production.

We then develop and evaluate a variety of RE models. First, we create models based on feature
engineering that use GloVe embeddings [19] and various linguistic features known to perform well
on BioNLP tasks [20]. Then, we develop models based on BERT [7], BioBERT [6], and SciBert [21].
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We represent the task of relation extraction in these models using the entity start, mention pool, and
masked input configurations discussed in [6, 22]. For BERT-based models, we experiment both with
fine-tuning and feature extraction. In our feature extraction experiments we combine BERT-based
features with our own engineered features.

System Precision Recall F1

v1 43.24 45.71 44.44
v2 41.17 50.00 45.16
v3 31.37 68.57 43.04
Masked BioBERT 29.87 70.00 41.88

Table 2: RE Test Results.

We compare each of our proposed configura-
tions against the SOTA for biological RE [6],
a masked input BioBERT model. We refer to
our top three models as v1: BioBert feature
extraction and feature engineering, v2: Fine-
tuned SciBERT using mention pooling, and
v3: Fine-tuned BioBERT using entity start.
Table 2 reports the evaluation results for our
top three models and the SOTA model. We
note that each of our models outperforms the

SOTA model in terms of the F1 score. Since all of the models perform well on a different metric, we
decide to run each of them on the entire PubMed corpus.

3 Extracting Relations from PubMed

We run each of our pipeline configurations on PubMed [10], a repository of over 30 million biomedical
abstracts that we filter down to 10 million based on their relevance to humans or mice.

After extracting PPIs from PubMed, we compare them to the ones in STRING [15], the leading
structured PPI database, and ascertain to what extent our IE-based extractions are novel and in fact a
segment of the siloed biomedical knowledge contained only in text. The results of the comparison are
shown in Figure 2. We observe that IE-based PPIs do not significantly overlap with those in STRING
as the highest proportion of extracted relations contained in STRING among the three pipelines is
v1 at 24.32%. Additionally, we observe that each configuration behaves as we expect. Specifically,
pipeline v3, whose relation extraction model has the highest recall, extracts the most relationships,
whereas pipeline v1, whose relation extraction model has the highest precision, extracts the least
relationships.

Figure 2: A comparison of different IE pipelines and STRING.

Finally, our pipeline extracts more PPIs than previous biomedical information extraction attempts.
Most notably, Percha and Altman[9] extend PubTator [8] with RE functionality by using a dependency
parser and clustering-based algorithms. They extract 41,418 PPIs, whereas each of our pipelines
extract substantially more. In addition, we observe that the 198,178 PPIs pipeline v3 extracts is more
in line with the biomedical expectation since researchers determined there to be roughly 650k PPIs in
the human body of which only around 200k have been validated experimentally [11, 23].

4 Disease Gene Prioritization

The reason we developed our biomedical information extraction pipeline is to extract biomedical
knowledge from unstructured text, construct a biomedical knowledge graph, and leverage this graph
to infer novel biomedical discoveries. In previous sections we demonstrated that the components of
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our biomedical IE pipeline outperforms the leading NER and RE models in BioNLP. In this section,
we demonstrate that our biomedical IE pipeline goes further and also enables novel biomedical
discoveries.

Specifically, we focus on the problem of identifying disease genes, a set of genes associated with a
particular disease. We formulate this task as a link prediction problem [24, 25] where we construct a
biomedical knowledge graph and leverage the information in the graph to predict previously unknown
links between genes and diseases. Identifying said links then helps in developing drug targets for
uncured diseases.

Historically, biomedical IE pipelines have been evaluated in downstream link prediction tasks when
the IE-based extractions were the sole source of the graph [16, 17]. In this paper, we attempt to
ascertain whether a biomedical IE pipeline can also be used to complement an established structured
database that provides edges of the same relation type.

To demonstrate this, we construct five different biomedical knowledge graphs. For evaluation, we
use DisGeNET [26], the leading database for gene-disease associations. We split DisGeNET edges
randomly into train (80%), valid (10%), and test sets (10%), and use the same valid and test sets for
evaluating all five graphs. The only difference between the five graphs is the training data. The first
graph only uses the train set of DisGeNET. The second graph augments the train set of DisGeNET
with STRING. The remaining graphs augment the second graph, namely DisGeNET and STRING,
with extractions from one of the three versions of our biomedical IE pipeline.

For each experiment, we train and evaluate a link prediction model using a graph embedding algorithm
called RotatE [27] and use a library called Optuna [28] for hyper-parameter optimization. The results
of the experiments are shown in Table 3. Note that MR is the mean of all gene-disease link ranks,
MP is the mean of the rank divided by the pool for that disease, and hit@k describes the percentage
of links we obtain in the top "k" ranks.

MR MP hit@30 hit@3 hit@1

IE v3 + STRING + DisGeNET 1418.397 92.484 37.367% 15.302% 7.829%
IE v2 + STRING + DisGeNET 1441.802 92.262 35.409% 14.057% 7.473%
IE v1 + STRING + DisGeNET 1829.548 89.869 32.74% 13.701% 6.762%
STRING + DisGeNET 1952.084 89.362 31.139% 13.879% 7.651%
DisGeNET 7422.117 59.544 0.356% 0.178% 0.178%

Table 3: Link prediction results on various biomedical knowledge graphs.

We observe that augmenting v3 of our IE extractions to the graph provided a lift across all metrics
compared to the strong baseline of both STRING and DisGeNET. Specifically, MR had a relative
reduction of 27.3%, hit@3 had a relative lift of 10.3%, and hit@30 had a relative lift of 20.0%.

This indicates that the large amount of relations extracted from PubMed contains high-quality
edges and can be immediately helpful to a number of biomedical tasks. Additionally, by achieving
better performance in disease gene identification when augmenting a knowledge graph that already
contained PPIs from a structured resource with our extracted relations, we illustrate the tremendous
representational power contained in our IE-based PPIs.

5 Conclusion

We have introduced a biomedical IE pipeline that can be configured to extract any biomedical relation-
ship from unstructured text using a small amount of training data. We empirically demonstrated that
its NER and RE components outperform their leading competitors. We then ran it on tens of millions
of PubMed abstracts to extract hundreds of thousands of PPIs and show that these relations are novel
in comparison to the ones in leading structured databases. Finally, we evaluated our IE-based PPIs’
ability to enable biomedical discoveries by augmenting them to a knowledge graph that already
contains STRING-based PPIs and showed that the augmentation yielded a 20% relative increase in
hit@30 for predicting novel disease-gene associations. We believe that increasing predictive accuracy
in such a difficult setting demonstrates the quality of our biomedical IE pipeline, which we plan to
use to uncover other biological relationships currently locked away in biomedical texts, and moves us
one step closer to developing drug targets for uncured diseases.
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1 Supplementary Material1

In training our named entity recognition models we utilized a dropout rate of 0.3 and a learning rate2

of 0.001 over 50 total epochs.3

4

In developing our relation extraction models, all fine tuning was done with a batch size of5

4 and a learning rate of 0.00002 over 4 total epochs. Additionally we used a L2 regularization weight6

of 0.0001. These models were optimized using Adam.7
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