
TransINT: Embedding Implication Rules in
Knowledge Graphs with Isomorphic Intersections of

Linear Subspaces

So Yeon Min
MIT CSAIL

Cambridge, MA 02142
symin95@gmail.com

Preethi Raghavan
IBM Research

Cambridge, MA 02142
praghav@us.ibm.com

Peter Szolovits
MIT CSAIL

Cambridge, MA 02142
psz@mit.edu

Abstract
Knowledge Graphs (KG), composed of entities and relations, provide a structured
representation of knowledge. For easy access to statistical approaches on relational
data, multiple methods to embed a KG into f(KG) ∈ Rd have been introduced.
We propose TransINT, a new KG embedding method that isomorphically preserves
the implication ordering among relations in the embedding space. TransINT maps
set of entities (tied by a relation) to continuous sets of vectors that are inclusion-
ordered isomorphically to relation implications. We further suggest possibilities
of learning semantic relatedness among sets of entities with magnitude of angle
between the embedded continuous sets.

1 Introduction
Recently, learning distributed vector representations of multi-relational knowledge has become an
active area of research [1, 8, 5, 14, 2]. These methods map components of a KG (entities and relations)
to elements of Rdand capture statistical patterns, regarding vectors close in distance as representing
similar concepts. However, they lack common sense knowledge which are essential for reasoning
[13, 4, 7]. For example, “parent" and “father" would be deemed similar by KG embeddings, but by
common sense, "father⇒ parent" yet not the other way around.

Thus, one focus of current research is to bring common sense rules to KG embeddings[4, 13, 15].
Some methods impose hard geometric constraints and embed asymmetric orderings of knowledge[7,
11, 12]. However, they only embed hierarchy (unary Is_a relations), and cannot embed n-ary relations
in KG’s. Moreover, their hierarchy learning is largely incompatible with conventional relational
learning, because they put hard constraints on distance to represent partial ordering, which is a
common metric of similarity/ relatedness in relational learning.

We propose TransINT, a new KG embedding method that isomorphically preserves the implication
ordering among relations in the embedding space. With rank-based parameter sharing, TransINT
restrict entities tied by a relation to be embedded to vectors in a particular region of Rd. For
example, we map any entities tied by is_father_of to vectors in a region that is part of the region for
is_parent_of; so that we can automatically know that if John is a father of Tom, he is also his parent
even if such a fact is missing in the KG. Such set-to-region mapping allows using angles between
regions as semantic relatedness among sets - an extension of the line of thought as in word/ image
embedding methods such as [6], [3] to relational embedding.

Figure 1: Two equivalent ways of expressing relations. (a): relations defined in a hypothetical KG. (b): relations
defined in a set-theoretic perspective (Definition 1). Because is_father_of ⇒ is_parent_of, the set for is_father_of
is a subset of that for is_parent_of (Definition 2). (c): Hierarchical depiction of familial relations.
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

The main contributions of our work are: (1) A novel KG embedding such that implication rules in the
original KG are guaranteed to unconditionally, not approximately, hold. (2) We introduce a novel
parameter sharing regularization and negative example construction methods. (3) Our model suggests
possibilities of learning semantic relatedness between groups of objects.

2 TransINT
In this section, we describe the intuition and justification of our method. We first define relation as
sets, and revisit TransH as mapping relations to sets in Rd. Finally, we propose TransINT, which
connects the ordering of the two aforementioned sets. We put ∗ next to definitions and theorems we
propose/ introduce. Otherwise, we use existing definitions and cite them.

Figure 2: Two perspectives of viweing TransH in R3; the orange dot is the origin, to emphasize that a vector
is really a point from the origin but can be translated and considered equivalently. (a): first projecting

#»

h and
#»
t onto His_family_of , and then requiring

»

h⊥ + #»rj ≈
»
t⊥ (b): first substracting #»

t from
#»

h , and then projecting
the distance (

»

t− h) to His_family_of and requiring (
»

t− h)⊥ ≈ rj . The red line is unique because it is when
»ris_family_of is translated to the origin.

2.1 Sets as Relations
Relations can be defined as sets.[] For example, in Figure 1a, 1b, Is_Father_Of(Tom, Harry) is
equivalent to (Tom, Harry) ∈ RIs_Father_Of

Definition (Relation Set): Let ri be a binary relation x, y entities. Then, ri(x, y) iff there exists some
set Ri such that the pair (x, y) ∈ Ri. Ri is called the relation set of ri.[9]

Definition (Logical Implication): For two relations, r1 implies r2 (or r1 ⇒ r2) iff ∀x, y,

(x, y) ∈ R1 ⇒ (x, y) ∈ R2

or equivalently,
R2 ⊂ R1.[9]

For example, Is_Father_Of ⇒ Is_Parent_Of by common sense. We can see in Figure 1b that,
RIs_Father_Of ⊂RIs_Parent_Of .

2.2 Background: TransE and TransH
Given a fact triple (h, r, t) in a given KG (i.e. (Harry, is_father_of, Tom)), TransE wants

#»

h + #»r ≈ #»
t

where
#»

h , #»r ,
#»
t are embeddings of h, r, t. In other words, the distance between two entity vectors

is equal to a fixed relation vector. TransE applies well to 1-to-1 relations but has issues for N-to-1,
1-to-N and N-to-N relations, because the distance between two vectors are unique and thus two
entities can only be tied with one relation.
To address this, TransH constraints the distance of entities in a multi-relational way, by decomposing
distance with projection (Figure 2a). TransH first projects an entity vector into a hyperplane unique
to each relation, and then requires their difference is some constant value. Like TransE, it embeds
an entity to a vector. However, for each relation rj , it assigns two components: a relation-specific
hyperplane Hj and a fixed vector #»rj on Hj . For each fact triple (h, rj , t), TransH wants (Figure 2)

»

h⊥ + #»rj ≈
»
t⊥ · · · · · (Eq. 1)

where
»

h⊥,
»
t⊥ are projections on

#»

h ,
#»
t onto Hj (Figure 2a).

Revisiting TransH We interpret TransH in a novel perspective. An equivalent way to put Eq.1 is
to change the order of subtraction and projection:

Projection of (
»

t− h) onto Hj ≈ #»rj .

2

Figure 3: (a): Vieweing TransINT as intersection of H’s and projection of #»r ’s. The dotted orange lines are the
projection constraint. (b): Viewing TransINT in the relation space (Figure 2b) perspective. The blue line, red
line, and the green plane is respectively is_father_of, is_mother_of and is_parent_of ’s relation space - where
»

t− h’s of h, t tied by these relations can exist. The blue and the red line lie on the green plane - is_parent_of ’s
relation space includes the other two’s.

This means that all entity vectors (
#»

h ,
#»
t) such that their distance

»

t− h belongs to the red line are
considered to be tied by relation rj (Figure 2b) i.e. Rj ≈ the red line. For example,

(Tom, Sue) ∈ Rj
∼=

»

(Sue− Tom) ∈ the red line
The red line is the set of all vectors whose projection onto Hj is the fixed vector #»rj . Thus, TransH
actually embeds a relation set in KG (figure 1b) to a continuous set in Rd. We call such sets
relation space; in other words, a relation space of some relation ri is the space where each (h, ri, t)’s
»

h− t can exist

Thus, in TransH,:
ri(x, y) ≡ (x, y) ∈ Ri (relation in KG)

∼= (x− y) ∈ relation space of ri (relation in Rd)
2.3 TransINT
Like TransH, TransINT embeds a relation rj to a (subspace, vector) pair (Hj , #»rj). However, TransINT
modifies the relation embeddings (Hj , #»rj) so that the relation spaces (i.e. red line of Figure 2b) are
ordered by implication; we do so by intersecting the Hj’s and projecting the #»rj’s (Figure 3a).

More generally, TransINT requires two hard geometric constraints on (Hj ,
#»rj)’s that

For distinct relations ri, rj , require the following if and only if ri ⇒ rj :
Intersection Constraint: Hj = Hi ∩Hj .
Projection Constraint: Projection of #»r1 to Hj is #»rj .

where
»

Hi,
»

Hj and #»ri,
#»rj are distinct. For example, we assign
His_parent_of = His_father_of ∩His_mother_of .

and require # »ris_father_of and # »ris_mother_of to have the same projection onto His_parent_of (orange
dottedd line of Figure 3a), which is # »ris_parent_of .

Our main result is that the two above constraints order relation spaces by inclusion isomorphically
to implication ordering. Figure 3b graphically illustrates that is_parent_of ’s relation space (green
hyperplane) includes those of is_father_of (blue line) and is_mother_of (red line).1

In other words, the two constraints guarantee that an ordering isomorphic to implication holds in
the embedding space: (ri ⇒ rj) iff (ri’s rel. space ⊂ rj’s rel. space) For example, if is_parent_of
subsumes is_father_of, the first relation space includes the latter’s; the converse also holds (Figure
3). At first sight, it may look paradoxical that the Hj’s and the relation spaces are inversely ordered;
however, it is a natural consequence of the rank-based geometry in Rd.

Main Theorem 1∗ (Isomorphism): Let {(Hi,
#»ri)}n be the (subspace, vector) embeddings assigned

to relations {Ri}n by the Intersection Constraint and the Projection Constraint; Pi the projection
matrix of Hi. Then, ({Sol(Pi, #»ri)}n,⊂) is isomorphic to ({Ri}n,⊂).

1Proofs and details are present in the appendix

3

In actual implementation and training, TransINT requires something less strict than Pi(
»

t− h) = #»ri:

Pi(
»

t− h)− #»ri ≈
#»
0 ≡ ||Pi(

»

t− h− #»ri)||2 < ε,

for some non-negative and small ε. This bounds
»

t− h− #»ri to regions with thickness 2ε, centered
around Sol(Pi, #»ri) (Figure 6). We prove that isomorphism still holds with this weaker requirement.

Definition∗ (Solε(P, k)) : Given a projection matrix P , the solution space of ||P #»x − #»

k ||2 < ε is
denoted as Solε(P,

#»

k).

Main Theorem 2∗ (Margin-aware Isomorphism)∗: For all non-negative scalar ε, ({Solε(Pi, #»ri)}n,⊂
) is isomorphic to ({Ri}n,⊂).
To intuitively explain our formulation, the lesser constraint the space to be projected onto, the more
freedom a vector is given; which is analogous to that, for example, is_family_of puts more freedom
on who can be tied by it than is_father_of . (Figure 1b).

2.4 Training TransINT
We construct negative examples (wrong fact triplets) and train with a margin-based loss, as in TransE
and TransH. We introduce a novel parameter sharing scheme to tie the basis of the Hr’s. This scheme
automatically makes traversing through a particular triple also execute training with all triple that
it implies (even if that triple itself is missing in the KG), eliminating the need to manually create
missing triples that are true by implication rule. We discuss details in the appendix.

Figure 4: Figure 3(b)’s relation spaces when Pi(
»

t− h)− #»ri ≈
#»
0 ≡ ||Pi(

»

t− h− #»ri)||2 < ε is required. (a):
Each relation space now becomes regions with thickness ε, centered around figure 3(b)’s relation space. (b):
Relationship of the angle and area of overlap between two relation spaces. With respect to the green region, the
nearly perpendicular cylinder overlaps much less with it than the other cylinder with much closer angle.

3 Future Work: Semantically Interpreting Overlap Between Regions
Traditional embedding methods that map an object (i.e. words, images) to a singleton vector learn
soft tendencies between embedded vectors, such as semantic similarity [6], [3]. A common metric for
such tendency is cosine similarity, or angle between two embddings. TransINT extends such line of
thought to semantic relatedness between groups of objects - as angle between regions of embeddings.
In Figure 6b, one can observe that the closer the angle between two regions, the larger the overlap in
area. For entities h and t to be tied by both relations r1, r2, t− h has to belong to the intersection
of their relation spaces. We hypothesize that if the angle between two relation spaces is near 0,
then two relations are semantically very similar. For example, relations such as was_born_in and
has_citizenship_of do not imply one another but are closely related. In such a case, both a majority
of V1 and V2 belong to the intersection. Conversely, if the angle between two relations are near 0, the
area of the intersection takes up the majority of both relation spaces. We will investigate this as an
ongoing work.

4 Conclusion
We presented a new KG embedding method that embed sets of entities (tied by relations) to continuous
sets in Rd. We show that the inclusion ordering of the embedded sets are isomorphic to the implication
ordering maong relations. We further suggest possibilities of applying our model for mining semantic
similairty among sets of entities.

4

References
[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.

Translating embeddings for modeling multi-relational data. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pages
2787–2795, USA, 2013. Curran Associates Inc.

[2] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured
embeddings of knowledge bases. In AAAI, 2011.

[3] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey Dean, Marc’Aurelio
Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In NIPS,
2013.

[4] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge
graphs and logical rules. In EMNLP, 2016.

[5] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge
graphs. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 4284–4295. Curran
Associates, Inc., 2018.

[6] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013.

[7] Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In NIPS, 2017.

[8] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, 2011.

[9] Robert Roth Stoll. Set theory and logic. Courier Corporation, 1979.

[10] Gilbert Strang. Linear algebra and its applications. Thomson, Brooks/Cole, Belmont, CA,
2006.

[11] Ivan Vendrov, Jamie Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of
images and language. CoRR, abs/1511.06361, 2015.

[12] Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. Probabilistic embedding of
knowledge graphs with box lattice measures. arXiv preprint arXiv:1805.06627, 2018.

[13] Quan Wang, Bin Wang, and Li Guo. Knowledge base completion using embeddings and rules.
In IJCAI, 2015.

[14] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, 2014.

[15] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian. Large-scale
knowledge base completion: Inferring via grounding network sampling over selected instances.
In CIKM, 2015.

Appendix

A Proof For TransINT’s Isomorphic Guarantee

Here, we provide the proofs for Main Theorems 1 and 2. We also explain some concepts necessary in
explaining the proofs. We put ∗ next to definitions and theorems we propose/ introduce. Otherwise,
we use existing definitions and cite them.

5

Figure 5: Projection matrices of subspaces that include each other.

A.1 Linear Subspace and Projection

We explain in detail elements of Rd that were intuitively discussed. In this and later sections, we mark
all lemmas and definitions that we newly introduce with ∗; those not marked with ∗ are accompanied
by reference for proof. We denote all d × d matrices with capital letters (ex) A) and vectors with
arrows on top (ex)

#»

b).

A.1.1 Linear Subspace and Rank

The linear subspace given by A(x − #»

b) = 0 (A is d × d matrix and b ∈ Rd) is the set of x ∈ Rd
that are solutions to the equation; its rank is the number of constraints A(x− #»

b) = 0 imposes. For
example, in R3, a hyperplane is a set of #»x = [x1, x2, x3] ∈ R3 such that ax1 + bx2 + cx3 − d = 0
for some scalars a, b, c, d; because vectors are bound by one equation (or its "A" only really contains
one effective equation), a hyperplane’s rank is 1 (equivalently rank(A) = 1). On the other hand, a
line in R3 imposes to 2 constraints, and its rank is 2 (equivalently rank(A) = 2).

Consider two linear subspaces H1, H2, each given by A1(
#»x − #»

b1) = 0, A2(
#»x − #»

b2) = 0. Then,

(H1 ⊂ H2)⇔ (A1(
#»x − #»

b1) = 0⇒ A2(
#»x − #»

b2) = 0)

by definition. In the rest of the paper, denoteHi as the linear subspace given by someAi(#»x− #»

bi) = 0.

A.1.2 Properties of Projection

Invariance For all #»x on H , projecting #»x onto H is still #»x ; the converse is also true.

Lemma 1 P #»x = #»x ⇔ #»x ∈ H [10].

Orthogonality Projection decomposes any vector #»x to two orthogonal components - P #»x and
(I − P) #»x (Figure 4). Thus, for any projection matrix P , I − P is also a projection matrix that is
orthogonal to P (i.e. P (I − P) = 0) [10].

Lemma 2 Let P be a projection matrix. Then I−P is also a projection matrix such that P (I−P) = 0
[10].

The following lemma also follows.

Lemma 3 ||P #»x || ≤ ||P #»x + (I − P) #»x || = || #»x || ([10]).

Projection onto an included space If one subspace H1 includes H2, the order of projecting a
point onto them does not matter. For example, in Figure 3, a random point #»a in R3 can be first
projected onto H1 at

#»

b , and then onto H3 at
#»

d . On the other hand, it can be first projected onto H3

at
#»

d , and then onto H1 at still
#»

d . Thus, the order of applying projections onto spaces that includes
one another does not matter.

If we generalize, we obtain the following two lemmas (Figure 6):

Lemma 4∗ Every two subspaces H1 ⊂ H2 if and only if P1P2 = P2P1 = P1.

6

proof) By Lemma 1, if H1 ⊂ H2, then P2
#»x = #»x ∀ #»x ∈ H1. On the other hand, if H1 6⊂ H2, then

there is some #»x ∈ H1,
#»x 6∈ H2 such that P2

#»x 6= #»x . Thus,

H1 ⊂ H2 ⇔ ∀ #»x ∈ H1, P2
#»x = #»x

⇔ ∀ #»y , P2(P1
#»y) = P1

#»y ⇔ P2P1 = P1.

Because projection matrices are symmetric ([10]),

P2P1 = P1 = P1
T = P1

TP2
T = P1P2.�

Lemma 5∗ For two subspaces H1, H2 and vector
#»

k ∈ H2,

H1 ⊂ H2 ⇔ Sol(P2,
#»

k) ⊂ Sol(P1, P1
#»

k).

proof) Sol(P2,
#»

k) ⊂ Sol(P1, P1
#»

k) is equivlaent to ∀ #»x ∈ Rd, P2
#»x =

#»

k ⇒ P1
#»x = P1

#»

k .

By Lemma 4, if H1 ⊂ H2 ⇔ P1P2 = P1. Since
#»

k ∈ P2, P2
#»x =

#»

k ⇔ P2(x −
#»

k) =
#»
0 ⇔

P1(P2
#»x − #»

k) =
#»
0 ⇔ P1P2

#»x = P1
#»

k ⇔ P1
#»x = P1

#»

k .�

Partial ordering If two subspaces strictly include one another, projection is uniquely defined from
lower rank subspace to higher rank subspace, but not the other way around. For example, in Figure 3,
a point #»a in R3 (rank 0) is always projected onto H1 (rank 1) at point

#»

b . Similarly, point
#»

b on H1

(rank 1) is always projected onto similarly, ontoH3 (order 2) at point d. However, "inverse projection"
from H3 to H1 is not defined, because not only

#»

b but other points on H1 (such as
#»

b′) project to H3

at point
#»

d ; these points belong to Sol(P3,
#»

d). In other words, Sol(P1,
#»

b) ⊂ Sol(P3,
#»

d). This is
the key intuition for isomorphism , which we prove in the next chapter.

A.2 Proof for Isomorphism

Now, we prove that TransINT’s two constraints (section 2.3) guarantee isomorphic ordering in the
embedding space.

Two posets are isomorphic if their sizes are the same and there exists an order-preseving mapping
between them.[] Thus, any two posets ({Ai}n,⊂), ({Bi}n,⊂) are isomorphic if |{Ai}n| = |{Bi}n|
and

∀i, j Ai ⊂ Aj ⇔ Bi ⊂ Bj

Main Theorem 1 (Isomorphism): Let {(Hi,
#»ri)}n be the (subspace, vector) embeddings assigned

to relations {Ri}n by the Intersection Constraint and the Projection Constraint; Pi the projection
matrix of Hi. Then, ({Sol(Pi, #»ri)}n,⊂) is isomorphic to ({Ri}n,⊂).
proof) Since each Sol(Pi,

#»ri) is distinct and each Ri is assigned exactly one Sol(Pi,
#»ri),

|{Sol(Pi, #»ri)}n| = |{Ii}n|. 1

Now, let’s show
∀i, j, Ri ⊂ Rj ⇔ Sol(Pi,

#»ri) ⊂ Sol(Pj , #»rj).

Because the ∀i, j, intersection and projection constraints are true iff Ri ⊂ Rj , enough to show that
the two constraints hold iff Sol(Pi, #»ri) ⊂ Sol(Pj , #»rj .

First, let’s show Ri ⊂ Ri ⇒ Sol(Pi,
#»ri) ⊂ Sol(Pj ,

#»rj). From the Intersection Constraint, Ri ⊂
Ri ⇒ Hj ⊂ Hi. By Lemma 5, Sol(Pi, #»ri) ⊂ Sol(Pj , Pj

#»ri). From the Projection Constraint,
#»rj = Pj

#»ri. Thus, Sol(Pi, #»ri) ⊂ Sol(Pj , Pj #»ri) = Sol(Pj ,
#»rj). · · · · ·· 2

Now, let’s show the converse; enough to show that if Sol(Pi, #»ri) ⊂ Sol(Pj , #»rj), then the intersection
and projection constraints hold true.

Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj)

⇔ ∀ #»x , Pi
#»x = #»ri ⇒ Pj

#»x = #»rj)

If Pi #»x = #»ri,

∀ #»x , PjPi
#»x = Pj

#»ri
∀ #»x , Pj

#»x = #»rj

7

both have to be true. For any #»x ∈ Hi, or equivalently, if #»x = Pi
#»y for some #»y , then the second

equation becomes ∀ #»y , PjPi
#»y = #»rj , which can be only compatible with the first equation if

#»rj = Pj
#»ri, since any vector’s projection onto a subspace is unique. (Projection Constraint)

Now that we know #»rj = Pj
#»ri , by Lemma 5, Hi ⊂ Hj (intersection constraint).· · · 3 From 1 , 2 ,

3 , the two posets are isomorphic.�

In actual implementation and training, TransINT requires something less strict than Pi(
»

t− h) = #»ri:

Pi(
»

t− h)− #»ri ≈
#»
0 ≡ ||Pi(

»

t− h− #»ri)||2 < ε,

for some non-negative and small ε. This bounds
»

t− h− #»ri to regions with thickness 2ε, centered
around Sol(Pi, #»ri) (Figure 5). We prove that isomorphism still holds with this weaker requirement.

Definition∗ (Solε(P, k)) : Given a projection matrix P , the solution space of ||P #»x − #»

k ||2 < ε is
denoted as Solε(P,

#»

k).

Main Theorem 2 (Margin-aware Isomorphism): For all non-negative scalar ε, ({Solε(Pi, #»ri)}n,⊂)
is isomorphic to ({Ri}n,⊂).
proof) Enough to show that ({Solε(Pi, #»ri)}n,⊂) and ({Sol(Pi, #»ri)}n,⊂) are isomorphic for all ε.

First, let’s show

Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj)⇒ Solε(Pi,

#»ri) ⊂ Solε(Pj , #»rj).

By Main Theorem 1 and Lemma 4,

Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj)⇔ #»rj = Pj

#»ri, Pj = PjPi.

Thus, for all vector
#»

b ,

Pi(x− #»ri) =
#»

b

⇔ PjPi(
#»x − #»ri) = Pj

#»

b

⇔ Pj(
#»x − #»ri) = Pj

#»

b (∵ Lemma 4)

⇔ Pj(
#»x − #»rj) = Pj

#»

b (∵ Pj
#»rj =

#»rj = Pj
#»ri)

Thus, if ||Pi(#»x − #»ri)|| < ε, then ||Pj(#»x − #»rj)|| = ||Pj(Pi(#»x − #»ri))|| < ||Pj(Pi(#»x − #»ri)) + (I −
P)(Pi(

#»x − #»ri))|| = ||Pi(#»x − #»ri)|| < ε. · · · 1

Now, let’s show the converse. Assume ||Pi(#»x − #»ri)|| < ε for some i. Then,

Thus, for ||Pi(#»x − #»ri)|| < ε to bound ||Pj(#»x − #»rj)|| at all for all #»x ,

Pj(I − Pi) = 0, Pj(
#»ri − #»rj) = 0

need to hold. By Lemma 4 and 5,

Pj = PjPi ⇔ Hj ⊂ Hi

⇔ Sol(Pi,
#»ri) ⊂ Sol(Pj , Pj #»ri) = Sol(Pj ,

#»rj) · · 2

|{Solε(Pi, #»ri)}n| = |{Sol(Pi, #»ri)}n| holds obviously; each Sol(Pi, #»ri) has a distinct Solε(Pi, #»ri)

and each Solε(Pi, #»ri) also has a distinct "center" (Sol(Pi, #»ri)) · · 3

From 1 , 2 , 3 , the two sets are isomorphic. �

B Initialization and Training

The intersection and projection constraints can be imposed with parameter sharing. We describe how
shared parameters are initialized and trained.

8

B.1 Parameter Sharing Initializaion

From initialization, we bind parameters so that they satisfy the two constraints. For each entity ej ,
we assign a d-dimensional vector #»ej . To each Ri, we assign (Hi,

#»ri) (or (Ai, #»ri)) with parameter
sharing. We first construct the H’s.

Intersection constraint We define the H’s top-down, first defining the intersections and then the
subspaces that go through it. To the head Rh, assign ah linearly independent rows for the basis of
Hh. Then, to each Ri that is not a head, additionally assign ai rows linearly independent to the bases
of all of its parents, and construct Hi with its bases and the bases of all of its parents. Projection
matrices can be uniquely constructed given the bases ([10]).

Now, we initlialize the #»ri’s.

Projection Constraint To the head Rh, pick any random xh ∈ Rd and assign #»rh = Phx. To each
non-head Ri whose parent is Rp, assign #»ri =

#»rp + (I −Pp)(Pi)xi for some random xi. This results
in

Pp
#»ri = Pp

#»rp + Pp(I − Pp)(Pi) #»xi =
#»rp +

#»
0 = #»rp

for any parent, child pair.

B.1.1 Training

We construct negative examples (wrong fact triplets) and train with a margin-based loss, following
the same protocols as in TransE and TransH.

Training Objective We adopt the same loss function as in TransH. For each fact triplet (h, ri, t),
we define the score function

f(h, ri, t) = ||Pi(
»

t− h)− #»ri||2
and train a margin-based loss L which is aggregates f ’s and discriminates between correct and
negative examples.

L =
∑

(h,ri,t)∈G

max(0, f(h, ri, t)
2 + γ − f(h′, r′i, t′)2)

where G is the set of all triples in the KG and (h′, r′i, t
′) is a negative triple made from corrupting

(h, ri, t). We minimize this objective with stochastic gradient descent.

Automatic Grounding of Positive Triples The parameter sharing scheme guarantees two advan-
tages during all steps of training. First, the intersection and projection constraint are met not only at
initialization but always.

Second, traversing through a particular (h, ri, t) also automatically executes training with (h, rp, t)
for any ri ⇒ rp. For example, by traversing (Tom, is_father_of, Harry) in the KG, the model
automatically also traverses (Tom, is_parent_of, Harry), (Tom, is_family_of, Harry), even if the two
triples are missing in the KG. This is because PpPi = Pp with the given initialization (section 4.1.1)
and thus,

f(h, rp, t) = ||Pp(
»

t− h)− #»rp||2
2
= ||Pp(Pi((

»

t− h)− #»ri))||2
2

≤ ||(Pp + (I − Pp))Pi((
»

t− h)− #»ri))||2
2
= ||(Pi((

»

t− h)− #»ri))||2
2
= f(h, ri, t)

In other words, training f(h, ri, t) towards less than ε automatically guarantees, or has the effect of
training f(h, rp, t) towards less than ε. This enables the model to be automatically trained with what
exists in the KG, eliminating the need to manually create missing triples that are true by implication
rule.

9

	Introduction
	TransINT
	Sets as Relations
	Background: TransE and TransH
	TransINT
	Training TransINT

	Future Work: Semantically Interpreting Overlap Between Regions
	Conclusion
	Proof For TransINT's Isomorphic Guarantee
	Linear Subspace and Projection
	Linear Subspace and Rank
	Properties of Projection

	Proof for Isomorphism

	Initialization and Training
	Parameter Sharing Initializaion
	Training

