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Abstract

To facilitate information sharing between systems and devices in a coalition opera-
tion, unstructured data from various sensors must be analysed accordingly. Recent
work has developed the notion of a context-dependant generative policy framework
capable of learning generative policy models from strings and text-based data in
a tabular format. However, in order to fully utilise generative policy models in
coalition environments, it is vital that unstructured contextual information can be
analysed alongside tabular data, potentially at the edge of the network. This paper
performs a deep-dive into the emerging field of neural-symbolic machine learning
with a view towards enabling future neural-symbolic generative policy models that
are capable of analysing both structured and unstructured data present in a coalition
operation, whilst providing full transparency and enabling edge of network reason-
ing capability. Specifically, a technique called DeepProbLog is investigated and
applied to a coalition scenario, highlighting key research challenges and questions
to be addressed in order to advance the capability of generative policy models for
coalition operations.

1 Introduction

Generative policy models [1] have been proposed as a means of autonomously managing the inter-
actions and behaviours between systems and devices within coalition operations (i.e. multi-agent
environments) across varying contexts. Recent work has developed a formal framework for learn-
ing context-dependant generative policy models using Answer Set Grammars (ASGs) [2, 3] with
applications in autonomous vehicles [4], logistical resupply [5], access control [6] and information
sharing [7]. In all of the applications explored to-date, generative policy models have been learned
from string and tabular based training examples. However, to fully utilise generative policy models in
coalition environments it is crucial to also analyse and learn from unstructured data to gain a better
understanding of the context in which devices operate. A hybrid neural-symbolic learning approach
for learning generative policy models could match the required explainable properties of symbolic
learning with the powerful performance of neural models for analysing unstructured data.

This paper performs a deep-dive into the field of neural-symbolic learning by exploring the effective-
ness of an emerging technique, called DeepProbLog [8], for combining neural learning of contextual
features from unstructured data together with symbolic-based inference of coalition policy decisions.
We compare its performance to a pure end-end statistical learning approach using a logistical resupply
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scenario, and show that the hybrid approach reaches a higher accuracy when inferring resulting policy
decisions. Based on these results we argue that a future hybrid neural-symbolic learner capable
of inferring, and learning generative policy models from structured and unstructured data can be
deployed in real-world coalition environments due to their ability to learn over multi-modal datasets
whilst retaining the required level of explainability.

In section 2 we summarise some of the key state-of-the-art work in the field of neural-symbolic
learning, in section 3 we outline our experimental approach and in section 4 we present our results
and discuss future work. Finally, we conclude in section 5.

2 Related Work

The field of neural-symbolic learning has made significant progress in the last decade. Among the
initial contributions are the work of Garcez et al. [9] and Hammer and Hitzler [10], summarised,
together with related approaches, in Besold et al. [11]. Among these, CILP [12] uses a neural
network to approximate logical rules such that inductive learning can be used to refine logic-based
background knowledge with examples. The emphasis is on using neural computation to improve
symbolic knowledge. More recently, Hu et al., [13] distill logical rules into the weights of a neural
network to assist the neural network in learning challenging aspects of a classification task from
unstructured text, such as contrastive sentences in sentiment analysis. The emphasis here is to use
symbolic knowledge to improve a neural learning task. Manhaeve et al. [8] introduce a probabilistic
logic programming language, called DeepProbLog, that integrates neural networks with probabilistic
logic programming modelling and reasoning. This extends ProbLog [14] to support the learning of
neural objects from unstructured data such as images by guiding the neural classification process
through probabilistic logic-based inference. This integrated neural-symbolic model, with given fixed
probabilistic logic-based rules is trained end-end from examples of labelled consequences that the
logic program is modelled to infer.

In this paper, we apply the DeepProbLog approach to a more complex unstructured dataset and
combine the training and classification of two neural models together with a probabilistic logic-based
program that encodes a given set of policies about decisions to make in response to the classification,
using a Convoloutional Neural Network (CNN) model, of particular objects in CCTV camera images.
The motivation behind this is twofold: (i) evaluate the effectiveness of ProbLog when dealing with
raw, multi-modal data and (ii) provide a first step of a wider program of research aimed at learning
generative policy models in an end-to-end fashion from multi-modal contextual datasets including
imagery, video and audio.

3 Experimental Approach

Firstly, we describe our application scenario. Consider a logistical resupply mission where a re-
supply convoy must reach a particular destination, navigating through areas of adversarial activity.
Let us assume the resupply convoy does not have communication to high performance back-end
computing facilities although does have access to local sensing infrastructure within the coalition
environment. In our experiment, we assume the resupply convoy has access to a CCTV camera
image, as shown in Figure 1a, that is capable of observing enemy vehicles. We also assume that
the resupply convoy has access to a team of ground troops that may be available or unavailable at
a given time. The convoy must autonomously decide various actions to take within the mission, in
order to mitigate the risk of adversarial compromise. In particular, it operates using the following
policies: IF enemy_vehicle_present AND ground_troops_available THEN deploy_ground_troops. IF
(enemy_vehicle_present AND ground_troops_unavailable) OR unsure THEN re_route_convoy. IF
enemy_vehicle_not_present THEN proceed_as_normal.

We utilise the Transport for London (TfL) CCTV dataset1 and consider red buses to represent enemy
vehicles. We use the MNIST2 dataset to simulate the prediction of ground troop availability, assuming
for our experiment that the MNIST digit 0 represents ground_troops_available and the MNIST digit
1 represents ground_troops_not_available. We formalise the policies using ProbLog and generate
training and test examples of the form mission_step(cctv_image,mnist_image, policy_action).

1https://data.london.gov.uk/dataset/tfl-live-traffic-cameras
2http://yann.lecun.com/exdb/mnist/
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The full listing for the DeepProbLog program that represents the logistical resupply scenario is given
in Appendix A.

(a) Sample CCTV image 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

DeepProbLog
Baseline CNN

(b) Experimental results

Figure 1: Sample CCTV image indicating the presence of an enemy vehicle represented as a red
London bus and the experimental results of comparing the accuracy of DeepProbLog to a baseline
CNN for predicting policy outcomes on the test set.

To analyse the CCTV contextual data, we utilise a CNN pre-trained on the ResNet18 architecture3

and adopt a transfer learning approach, freezing the weights of all layers except the final fully
connected layer which remains trainable. The CNN outputs 3 classes, enemy_vehicle_present,
enemy_vehicle_not_present, and unsure – which occurs if TfL redact a particular CCTV image. This
is analagous to a coalition environment as a coalition partner may wish to dynamically restrict access
to a given sensor. As discussed, to simulate the decision as to whether or not ground troops are
available, which in reality may be due to a complex set of factors such as the severity of enemy
activity, weather conditions and resource availability, we use a binary classifier in the form of a
CNN to detect MNIST4 digits 0 or 1 and adopt the same CNN architecture that is used in the
DeepProbLog [8] MNIST experiments. We implement our experiment in PyTorch, extending the
DeepProbLog framework5.

We train our DeepProbLog model end-end with respect to the final policy decision, represented as a
potential action within the logistical resupply mission—i.e. deploy_ground_troops, re_route_convoy
or proceed_as_normal. The DeepProbLog model learns from example policy decisions and updates
the weights of the CCTV and Ground Troop CNNs through back-propagation. Note that the CCTV
and Ground Troop CNNs are not trained independently, they learn to classify enemy vehicle status
and ground troop availability respectively as part of the integrated learning and policy inferencing
process DeepProbLog provides.

4 Results

Figure 1b details the results of our experiment, comparing the accuracy of the fully integrated
DeepProbLog approach with a baseline neural approach over 30, 000 training iterations. We use the
same dataset for both approaches which consists of 10, 000 train and 500 test examples, where an
example consists of a CCTV image and an MNIST image annotated with a resulting policy decision.
Also, we repeat our experiment 5 times and take the average accuracy at each number of iterations to
account for random weight initialisation in the neural components. Error bars indicating the standard
deviation at each number of iterations are shown in Figure 1b. The goal of the DeepProbLog approach
is to train the neural CNN components whilst inferring the mission_step/3 predicate as listed in
Appendix A. For the baseline, we adopt a similar approach to the DeepProbLog experiments [8]

3https://www.kaggle.com/pytorch/resnet18
4http://yann.lecun.com/exdb/mnist/
5https://bitbucket.org/problog/deepproblog/src
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and concatenate the CCTV images with MNIST images to train a CNN to classify the resulting
mission_step policy action from the concatenation of the two images.

With the addition of the logical rules, the DeepProbLog approach significantly outperforms the
baseline after 30, 000 iterations. Nevertheless, the accuracy of this policy learning task is far below
acceptable levels for real-world application. This is due to the challenging nature of identifying red
buses in TfLs CCTV cameras. We substantiated this by running a second experiment in which the
CCTV CNN was replaced with a 3-digit MNIST CNN. After only 1, 000 iterations the trained model
achieved near 100% accuracy. Future work should be performed to improve the CCTV CNN and
investigate object detection models using Faster-RCNN [15].

Analysing the results in Figure 1b, it is apparent that the DeepProbLog approach exhibits more
variance in it’s performance when compared to the baseline CNN, especially at 21, 000 iterations.
We hypothesise that this is due to the different random weight initialisations in the neural components
in comparison to the baseline. In the DeepProbLog approach both the MNIST CNN and the CCTV
CNN are subject to random weight initialisation, whereas in the baseline approach there is only one
random weight initialisation. This highlights a potential disadvantage for the DeepProbLog approach
in coalition operations, where consistency is important as it may not be possible in terms of time to
conduct many repeated learning tasks. Also, given the vast number of potential contextual features,
the number of different neural components could be large. Future work should investigate increasing
the number of neural components to observe the effect on performance consistency. Also, if further
training time or additional computational resources are available, the number of experimental repeats
could be increased to further evaluate this hypothesis.

5 Discussion and Conclusion

We have explored the use of a neural-symbolic learning technique—DeepProbLog for the task of
inferring policy decisions from multi-modal data in the context of a logistical resupply operation.
Compared to a baseline CNN, DeepProbLog results in significantly stronger performance when
inferring policy decisions although exhibits greater variance between experimental repeats.

Another key limitation of the current technique is that the logical rules are specified by humans.
Our future work will investigate creating a neural-symbolic generative policy model that learns the
weights of neural components aimed at predicting contextual features from raw, unstructured data
whilst also learning symbolic policy rules by means of our ASG-based policy learner [2, 3]. We plan
to first consider the case where the weights of neural components trained to extract contextual features
remain fixed and their output is used by a symbolic policy learner to learn a context-dependant
generative policy model. We will then investigate a full end-end neural-symbolic generative policy
model architecture, which back-propagates outcomes of learned rules through the neural components
to help improve the contextual feature classification and consequently the learned rules. We will
evaluate the two approaches with respect to accuracy, training time, explainability and consistency so
to satisfy the requirements for operability in coalition environments.
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A DeepProbLog Logistical Resupply Program

nn ( r e d _ b u s _ n e t , [ X] ,Y, [ p r e s e n t , n o t _ p r e s e n t , u n s u r e ] )
: : n e u r a l _ r e d _ b u s (X,Y ) .

nn ( g r o u n d _ t r o o p s _ n e t , [ X] ,Y, [ a v a i l a b l e , u n a v a i l a b l e ] )
: : n e u r a l _ g r o u n d _ t r o o p s (X,Y ) .

outcome ( p r e s e n t , a v a i l a b l e , d e p l o y _ g r o u n d _ t r o o p s ) .
outcome ( p r e s e n t , u n a v a i l a b l e , r e _ r o u t e _ c o n v o y ) .
outcome ( n o t _ p r e s e n t , _ , p r o c e e d _ a s _ n o r m a l ) .
outcome ( unsure , _ , r e _ r o u t e _ c o n v o y ) .

m i s s i o n _ s t e p (CCTV, GT_Info , R e s u l t ) :−
r e d _ b u s (CCTV, RB_Sta tus ) ,
g r o u n d _ t r o o p s ( GT_Info , GT_Sta tus ) ,
outcome ( RB_Status , GT_Status , R e s u l t ) .

r e d _ b u s (CCTV, p r e s e n t ) :−
n e u r a l _ r e d _ b u s (CCTV, p r e s e n t ) .

r e d _ b u s (CCTV, n o t _ p r e s e n t ) :−
n e u r a l _ r e d _ b u s (CCTV, n o t _ p r e s e n t ) .

r e d _ b u s (CCTV, u n s u r e ) :− n e u r a l _ r e d _ b u s (CCTV, u n s u r e ) .
g r o u n d _ t r o o p s ( GT_Info , a v a i l a b l e ) :−

n e u r a l _ g r o u n d _ t r o o p s ( GT_Info , a v a i l a b l e ) .
g r o u n d _ t r o o p s ( GT_Info , u n a v a i l a b l e ) :−

n e u r a l _ g r o u n d _ t r o o p s ( GT_Info , u n a v a i l a b l e ) .
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