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Abstract

Semantic parsing with strong supervision requires a large parallel corpus for train-
ing, whose production may be impractical due to the excessive human labour
needed for annotation. Recently, weakly supervised approaches based on reinforce-
ment learning have been studied, wherein only denotations, but not the logical
forms, are available. However, reinforcement learning approaches based on, e.g.,
policy gradient training, suffer reward sparsity and progress slowly. In this work,
we explore enriching the policy gradient framework with a back-translation mecha-
nism that boosts the reward signal. In this vein, we jointly optimize the expected
reward of obtaining the correct denotation and the likelihood of reconstructing
the natural language utterance. Initial experimental results suggest the proposed
method slightly outperforms a state-of-the-art semantic parser trained with policy
gradient.

Introduction

Semantic parsing is the task of converting natural language utterances to logical representations that
a machine can understand and execute as problem solving steps. There has recently been a surge of
interest in developing machine learning methods for semantic parsing, owing to the creation of large-
scale text corpora. There has also been a proliferation of logical representations used in this setting,
including logical forms [28], domain specific languages [26], python code [24], SQL queries [31],
and bash commands [20]. A grand vision in AI that this work supports is the automatic translation of
natural languages to a logical formalism in which a machine may reason with knowledge.

Early work on semantic parsing applied supervised learning approaches, wherein a natural language
utterance is paired with a gold-standard program, which serves as ground truth for training [28, 12,
29, 30]. Such strong supervision, however, requires expert human effort to annotate a text corpus,
which becomes prohibitively expensive at the corpus scales needed.

Semantic parsing is, by its nature, a machine translation problem, and shares the difficulties faced
for low-resource natural languages. Recently, several efforts have tackled these problems using
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only monolingual data [16, 1]. These approaches typically use a combination of back-translation
and adversarial training to escape the requirement of parallel alignment between source and target
languages. These ideas parallel extensions [22, 32, 33, 27, 21] of adversarial generative models
applied in other fields such as computer vision, where image-to-image translation represents a similar
scenario.

Semantic parsing, on the other hand, is differentiated by the fact that some natural language utterances,
in the form of a question, may come furnished with an answer (sometimes called a denotation), even
though the program or logical query that would yield it is unknown. Collecting question-answer
pairs is much less labor-intensive than producing gold-standard code or logic, and generally does not
require expertise in knowledge representation or programming. These denotations have been used
as a source of weak supervision in much of the previous work on logical-form generation; see, e.g.,
[6, 19, 15, 3, 4, 2].

In this work, we follow this weakly supervised setting and explore the use of reinforcement learning
to generate programs [17, 23, 11, 18, 9]. Since gold-standard programs are unknown, reinforcement
learning matches the execution results of generated programs with ground-truth denotata to reward
(either positively or negatively) the translation model as it learns. Such a system may be trained
with policy gradient but this is known to be challenging because the gradient estimate exhibits high
variance and positive reward signals are generally quite weak initially.

Hence, we propose to use back-translation to encourage the production of correct programs by
boosting the availability of positive reward signals. Back-translation has been successfully applied in
several other settings; see, e.g., [1] for unsupervised machine translation, [32] for image-to-image
translation, and [13] for semi-supervised semantic parsing. In the setting of reinforcement learning,
the likelihood of reconstruction through back-translation serves as a source of incremental rewards,
which complement the rarely obtained positive reward resulting from correct program execution
and drives faster progress in model training. Good reconstructions may also substitute for programs
residing in the memory buffer in the memory-augmented policy gradient approach, MAPO [18],
a state-of-the-art weakly supervised semantic parser. Our initial empirical results show that the
proposed approach slightly improves over MAPO for SQL generation tasks.

Related Work

Semantic parsing with weak supervision has recently attracted growing interest; a basic architec-
ture used is a sequence-to-sequence (seq2seq) model, but because of the lack of gold-standard
programs, models are often trained using reinforcement learning, the simplest algorithm for which
being REINFORCE. Neural Symbolic Machines [17] augment this algorithm by interleaving it with
maximum-likelihood training, forming an iterative procedure that resembles expectation maximiza-
tion. Additionally, a key-variable memory is introduced to store intermediate execution results,
ensuring program compositionality. MAPO [18] extends Neural Symbolic Machines with additional
memory that stores correctly executed programs. This memory is used to reduce the variance of
the policy gradient estimates and to compose the marginal likelihood objective. [11] establish a
connection between the gradient estimates of REINFORCE and those of the marginal likelihood and
propose an improved algorithm to tackle the problem of spurious programs, through randomizing
beam search and promoting equal update weights for correct programs. [9] also focuses on the
challenge of spurious programs. Their solution is to lift natural language utterances to abstract forms
so that utterances with different surface forms but similar meaning are more likely to be decoded into
correct programs simultaneously. Beyond combining with marginal likelihood, [23] improves the
basic REINFORCE training through the use of paired neural networks, one serving as a distributed
executor and the other a symbolic one. The authors use the distributed executor’s intermediate
execution results to pretrain the symbolic executor for an initial policy and then use the REINFORCE
algorithm to improve the policy. Such an approach is well suited for answering table queries, where
the programs are simply row and column operations.

If denotations are not present, semantic parsing may be approached in an unsupervised manner. In this
vein, machine translation without parallel data is most relevant. In [16], the idea is to map sentences
in two different languages into the same latent space by using a single encoder and single decoder.
The training loss includes the reconstruction error in autoencoding, the cross entropy in cross-domain
translation, and the domain prediction error of an adversarial discriminator. [1] propose a similar use
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of a shared encoder, but the decoders are different among languages. The training techniques include
the use of pre-trained cross-lingual embedding and on-the-fly back-translation.

Lack of parallel data is also being actively addressed in computer vision, where a proliferation of
work extends the basic generative adversarial network (GAN) architecture [10] to fuse cross-domain
information. CoGAN [22] learns a joint distribution of images from different domains by sharing the
same latent space and same generator weights in the first few layers. The weight-sharing scheme limits
the network capacity and favors a joint distribution solution over a product-of-marginal-distributions
one. If x is an image and G is a mapping from one domain to the other, CycleGAN [32] imposes
a cycle consistency through jointly training an inverse mapping F such that F (G(x)) ≈ x. Cycle
consistency is extensively explored in image-to-image translation, models including DualGAN [27],
BiCycleGAN [33], and an improvement [21] of CoGAN; as well as in text style transfer [8].

In addition to the weakly supervised and unsupervised settings, many semantic parsing methods
trained in a semi-supervised or supervised manner offer inspiration, particularly in terms of the neural
architecture. SEQ4 [13], a chain of two seq2seq models with neural attention, is the basis of our
back-translation scheme. The first model translates a logical form to natural language whereas the
second one translates it back to the logical form. A key to this architecture is the reparameterization
trick used for decoding the natural language so that the gradient can flow through. [7] propose
another approach that also employs two seq2seq models, but in a supervised manner. This approach
defines sketches, which are a coarse representation of the logical form. The first seq2seq is used to
generate the sketch, whereas the second one completes the logical form conditioned on the sketch
and the natural language input. Such a coarse-to-fine scheme ensures the correct translation of key
information captured by the sketch.

Method

We propose using back-translation to enhance policy gradient training. In this section, we first briefly
review the standard seq2seq model and the basic reinforcement learning setting. Then, we introduce
the proposed application of back-translation.

Basic Seq2seq Model

Given an input sequence x = (x1, x2, . . . , xT ), seq2seq defines a neural architecture that emits a
sequence z = (z1, z2, . . . , zT ′) with probability model q(z|x). Through successive conditioning, the
probability model is decomposed as

q(z|x) =

T ′∏
t=1

q(zt|z<t, x). (1)

In this work, x denotes the natural language utterance and z denotes the program. The architecture
consists of an encoder, and a decoder with attention.

Reinforcement Learning

Denote by φ the parameters of the above seq2seq model q(z|x). Given a natural language utterance
x and its corresponding denotation y, the ground-truth program z is unknown. Hence, it is infeasible
to learn φ only by optimizing the probability model qφ(z|x) with maximum likelihood, because the
resulting decoded program z does not necessarily execute to y. However, a reward R(z) can be
defined for any decoded program z:

R(z) =

{
1, if z executes to y,
0, otherwise.

Hence, we may learn the model through reinforcement learning: maximize the expected reward with
respect to the probability model qφ(z|x), termed policy.

Specifically, for semantic parsing, because the number of possible outcomes z is finite, we write the
expected reward per training example x as

Eφ(x) =
∑
z

R(z)qφ(z|x).
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Since optimization is typically done by using stochastic gradient methods, one needs an (unbiased)
estimator of the gradient (called policy gradient)

∇φEφ(x) =
∑
z

R(z)∇φqφ(z|x).

The standard approach is to apply the log-derivative trick ∇ log q = (∇q)/q and rewrite the policy
gradient as

∇φEφ(x) =
∑
z

[R(z)− b]qφ(z|x)∇φqφ(z|x),

were b is an arbitrary baseline value. The benefit is that even if the output space for z is so large that
the summation is impossible to exactly evaluate, one may use Monte Carlo sampling to obtain an
unbiased estimator of the gradient and use b to control the variance of the estimator:

∇φEφ(x) ≈ 1

L

L∑
l=1

[R(z(l))− b]∇φqφ(z(l)|x), z(l) ∼ qφ(z|x).

One working choice for b in practice is 1
L

∑L
l=1R(z(l)).

Memory Augmented Policy Optimization (MAPO)

Reinforcement learning based algorithms often encountered the problems of cold start and sparse
signals. The random initialized policies often lead to small rewards; and the random policy samples
do not explore the search space efficiently. To solve these problems, [18] proposed to use a memory
buffer to augment the policy optimization. The key idea is to re-express the expected return objective
as the linear combination of two expectations: one term from the memory, and the other used to
explore unknown trajectories.

Eφ(x) =
∑
z∈B

R(z)qφ(z|x) +
∑
z/∈B

R(z)qφ(z|x)

They use enumeration to estimate the gradient of the first term and use Monte Carlo sampling with a
rejection scheme to estimate the gradient of the second term.

Back-Translation

Although MAPO reduced the impact of the aforementioned issues, there are still some challenges in
the training process. For example, a challenge for the policy gradient approach is that it is difficult
to obtain programs z(l) that earn a non-zero reward R(z(l)) initially, when the policy qφ(z|x) is
random (in the starting phase of training). Our approach is to train a second seq2seq model pθ(x|z)
jointly, which ensures that the decoded sequence z can be translated back to x. Such a cycle (Fig. 1)
consistently filters out infeasible translations and narrows the space that must be searched for a
reward-earning z.

Figure 1: The additional back-translation rewards in our framework.

4



Algorithm 1 Back-Translation Enhanced Weakly Supervised Text-to-SQL
Input: Data {xi, yi} for 1 ≤ i ≤ n; memory and exploration buffer Bi,Bei for 1 ≤ i ≤ n; constants
α, ε,M
repeat for all actors:

Initialize training batch D ←− Φ
Get a batch of inputs C
for (xi, yi,Bi,Bei ) ∈ C do

SystematicExploration(xi, qoldφ ,Bei ,Bi)
Sample z+i ∼ qoldφ over Bi
w+
i = max(qoldφ (Bi), α)

Add sample (z+i , Rf (z+i ), Rb(z
+
i ), w+

i ) to D
Sample another zi ∼ qoldφ
if zi /∈ Bi then
wi = 1− w+

i
Add (zi, Rf (zi), Rb(zi), wi) to D

end if
end for
Push D to training queue

until converge
Repeat for the learner:

Get a batch D from training queue
for (zi, Rf (zi), Rb(zi), wi) ∈ D do
dφ = dφ+ wi((1− α)Rf (zi) + αRb(zi))∇ log qφ(zi)
dθ = dθ + wiRb(zi)∇ log q′θ(zi)

end for
Fix θ, update φ = φ+ dφ, φoldφ = qφ
Fix φ, update θ = θ + dθ

until: Converge or a certain number of steps is reached
Output: Final parameters φ and θ

The architecture of the second seq2seq can be defined re-using Equation (1) with mathematical
notations q, x, z, T, T ′, φ replaced by q′, z, x, T ′, T, θ, respectively. We follow the MAPO framework,
and add additional rewards for the generated samples outside the memory. So in the forward loop,
the reward R(z) is changed into R(z) = (1− α)Rf (z) + αRb(z).

We can update the forward SQL generation model and the backward-translation model iteratively.
First, we fix the parameters of the back-translation model, the policy gradient for the forward model
is thus

((1− α)Rf (zi) + αRb(zi))∇ log qφ(zi|x).

We can use this to update the forward parameters φ and the forward policy qφ(z|x).

Then we fix the parameters for the forward model, and update the backward-translation model.
In this case, we already have the generated sample z as the fixed input and we know the target
translation x, so we do not need to use the forward reward score Rf (z) here. Only the backward
reward will impact the updating of the backward model parameters θ. The backward policy gradient
is Rb(zi)∇ log q′θ(zi). We summarize the algorithm in Algorithm 1.

Experiments

Dataset

We evaluated our model using the WikiTableQuestions dataset [25], which consists of 2,108 Wikipedia
tables (containing column names and cell entries) and 22,033 <question, answer> pairs pertaining
to the tables. The tables in the test set contain column names not seen in the training set. The goal of
the dataset is to take an English question and produce a program that, when executed, produces the
correct answer.
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Model architecture

For the forward-translation model, we used the MAPO algorithm (as described in [18]). The back-
translation seq2seq model (batch size: 10) was trained on <question, MAPO-predicted program>
pairs associated with a forward-translation (execution) reward of 1. The back-translation model then
calculated a back-translation reward for each trajectory in the training queue which the MAPO learner
linearly combined with the forward-translation reward before updating its model’s parameters. The
overall reward for a <question, MAPO-predicted program> was as follows:

R = (1− α)Rf + αRb

where α denotes the back-translation reward weight (set to 0.01 based on experimentation), Rf is the
forward-translation reward, and Rb indicates the back-translation reward.

To calculate the back-translation reward, the back-translation seq2seq model took <question, MAPO-
predicted program> pairs and translated the MAPO-predicted programs back into predicted questions.
Back-translation reward was the similarity score between the predicted question and the actual
question. Similarity was determined using a weighted linear combination of three accuracy metrics:
BLEU score (using uni- and bigrams with equal weights), the Universal Sentence Encoder metric [5],
and Word Mover’s Distance [14]. Each accuracy metric had its own weight (heuristically set to 1, 0.1,
and 0.01, respectively).

Pre-Training Back-translation Model

In the initial phase, the back-translation model has random parameters, so the additional back-
translation reward may take in a lot of noise. To make the back-translation module helpful and easily
updated, we first pre-train a SQL2Text model using some intermediate results and then initialize the
back-translation model using the pre-trained model. To train this model, we used a MAPO learner
(trained on the WikiTableQuestions training dataset) to generate <question, program> pairs with
forward-translation rewards of 1 (N=8,076). The tokens of these pairs were converted into subwords
using OpenNMT’s Byte Pair Encoding method (see the Appendix for a description of the experiment
used to deem subwording was appropriate/useful). An 80-20 training/validation split was used to
select the best model, which was subsequently used as the pre-trained back-translation seq2seq model.
The best model had a BLEU score (focusing on uni- and bigrams) of 0.3805 for the validation set.

Results

When training its learner, the MAPO algorithm only considers forward-translation (execution) reward
associated with a predicted program – either 1 (correct answer produced) or 0 (incorrect answer
produced). To determine the effect of back-translation on performance, we compared our model’s
performance with that of MAPO’s and other reinforcement learning based methods: REINFORCE,
MML (Maximum Marginal Likelihood), Hard EM, IML [18]. All the baseline results are cited from
their original paper.

Table 1 summarizes the results for the baselines and MAPO+back-translation model, reporting the
results based on 5 runs. Figure 2 provides one example for comparison of the performance curves for
MAPO and MAPO+back-translation.

Table 1: The mean accuracy and standard deviation on the dev set of WikiTable based on 5 runs.

REINFORCE ≤ 10
MML (Soft EM) 39.7 ± 0.3
Hard EM 39.3 ± 0.6
IML 36.8 ± 0.5
MAPO 42.3 ± 0.3
MAPO+bt 42.6 ± 0.5

Discussion

Overall, the performance of the original forward-translation and the new forward+back-translation
models are relatively similar, with the model that incorporates back-translation slightly outperforming
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Figure 2: Performance curves for the MAPO (blue) and MAPO+back-translation (red) models. The
results have been smoothed by a factor of 0.9.

the baseline. It is likely that part of the reason the back-translation model’s performance is so close
to the baseline is because the final back-translation model’s performance was still relatively low
(obtaining BLEU scores <0.4), thus not a great measure for the additional reward. However, as
mentioned previously, the validation performance for the MAPO+back-translation model is slightly
higher than the baseline MAPO implementation, and from the learning curves we can see it learns a
little bit faster – suggesting back-translation may be useful. We hope this work can be a good starting
point. In the future, we will explore ways to improve the back-translation model, or to use other
methods to obtain additional rewards.
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