Differentiable Functions for Combining First-order
Constraints with Deep Learning via Weighted Proof

Tracing
Naveen Sundar Govindarajulu Colin White
RealityEngines.Al RealityEngines.Al
Rensselaer Al & Reasoning Laboratory (RPI) Carnegie Mellon University
San Francisco San Francisco
CA 94103 CA 94103
naveen@realityengines.ai colin@realityengines.ai
Abstract

Effectively training deep learning models often requires massive amounts of la-
beled data. Recent work has shown that accuracy on small or noisy datasets can be
improved by incorporating domain knowedge into a neural network in the form of
logic constraints. However, this line of work does not yet scale well to more com-
plex forms of constraints as these approaches use logics such as propositional logic
or fragments of first-order logic. One source of scability issues is the expressivity
bottleneck of such systems. Information such as the number of relevant objects,
mathematical information or information about deep nested heirarchies can be cast
in first-order logic with a linear number of formulae, but propositional logic and
fragments of first-order logic may require in the worst case an exponential number
of formulae to represent the same information.

In this work, we design a new framework for incorporating knowledge in arbitrarily
complex logics (such as full first-order logic) into neural networks. Our framework
converts arbitrary logic constraints into a differentiable term that can fit into the
loss function of a neural network and can be used with gradient descent. We use
weighted proof tracing to get an initial differentiable function, and then we use a
logic minimization algorithm to finally compress and simplify the function. To
the best of our knowledge, this is the first technique that can incorporate general
first-order logic statements into a neural network. To demonstrate our technique,
we run several object detection experiments on sets of MNIST and Fashion-MNIST
images, and we show that our method significantly improves the performance of
neural networks, especially in the case of noisy or missing labeled data. We also
run debiasing experiments with the UCI income dataset and show that our approach
can produce improved bias scores without a significant loss in accuracy.

1 Introduction

Since the deep learning revolution in 2012, neural networks have been the leading method for a
wide variety of tasks including image classification and object detection. The dominant approach
is to train a neural network on huge labeled datasets by minimizing task loss. A natural question is
whether accuracy or efficiency can be improved by incorporating domain knowledge. For example in
object detection, a bicycle is more likely to appear in the same image as a car than a dining room
table. Many object detection datasets have a hierarchical set of labels, therefore, there is a huge set
of constraints governing the likelihood of objects appearing in the same image as other objects. For
example, many types of food are likely to appear in images together, and with kitchen appliances,
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but not with sea creatures. However, most work on combining logic rules with deep learning are not
scalable enough to incorporate large sets of constraints, or cannot encode complex logic constraints.

In this work, we design a new framework for incorporating arbitrary logics with neural networks. Our
approach is based on representing knowledge and constraints in any logic with an inference system.
We assume that a neural network outputs probabilities for a set of formulae. Our goal is to ensure that
the probabilities output by the network adhere to the information present in the constraints. Inference
in classical logics is not differentiable. Therefore, we present an approach that converts inference into
a differentiable format by tracing all possible inference paths that lead to a violation. Specificially
for first-order logic (FOL), we use a resolution theorem prover to peform this proof tracing. We
finally simplify and compress the derived function by using the Quine-McCluskey algorithm for
minimization of logic formulae.

We demonstrate this approach with standard first-order logic. In our instantiation of the framework,
we use first-order resolution theorem proving for inference to turn arbitrary sets of constraints into a
differentiable term that can fit into the loss function of a neural network. To the best of our knowledge,
this is the first technique that can incorporate full first-order logic statements into a neural network.
To demonstrate our technique, we run several object detection experiments on sets of MNIST and
Fashion-MNIST images, and we show that our method significantly improves the performance of
neural networks, especially in the case of noisy or missing labeled data. We also run debiasing
experiments with the UCI income dataset and show that our approach can produce improved bias
scores without a significant loss in accuracy.

Need for First-order Logic Why do we need the full power of first-order logic? Many important
problems and domains have usable first-order axiomatizations. For example, consider fundamental
theories of physics. There are robust first-order logic axiomatizations of special and general relativity
presented by Andréka et al. [[1]]. All of their axioms are cast in and require standard first-order logic.
As far as we are aware of, all automated reasoning and inference projects in this space have been done
using full first-order logic [27,[12]. More closer to standard Al, we have extensive axiomatizations
of common sense knowledge in full first-order calculi such as the event calculus [23]]. Planning
formalisms such as PDDL [11] are based on variants of first-order logic. In the industry, business
rules and knowledge are cast and formulated in different fragments of first-order logic, such as SQL
[19], RDF [6]], OWL [34] etc.

2 Related Work

There are some notable prior approaches that try to achieve some combination of neural networks
and knowledge based systems. We go through some of them that are relevant to our work. Xu et al.
present a system for integrating knowledge into a neural network through the network’s loss function
[33]. They represent constraints as a formula ¢ in propositional logic. The network’s outputs assign
probabilities or weights to the atoms in the formula. Weighted model counting of ¢ is then used
as a component in the loss function. Weighted model counting should be done in a manner that
is differentiable so that it can work with gradient descent training methods. While this approach
is elegant, it suffers from two scalability issues. The first issue is that propositional logic is not
scalable enough to represent knowledge in many real-world applications. Second, Xu et al. use model
counting in their loss function. Model counting does not scale up for first-order logics, as quantified
logics can have unbounded models even for small sets of constraints.

Hu et al. [14] build neural networks by distilling a set of rules using soft logic. In their approach, a
given set of logic statements are essentially considered to be another parallel model. In [16], Krishna
et al. follow up with more extensive experiments that cast doubts on the efficacy of Hu et al. when
random effects are taken into account.

Manhaeve et al. [20] consider a differentiable form of ProbLog, a probabilistic version of Prolog, [7]
where the weights for the clauses come from the outputs of a neural network. They present a form
of training which can adjust both the weights of the network as well as the weights of clauses in a
ProbLog program. DeepProbLog aims to address a different problem than what we address here.
In DeepProbLog, a neural network provides inputs to a logic program. The parameters of the logic
program can be jointly trained with the neural network.



Table 1: Relevant Work

Approach Logic Other Restrictions

Harnessing Logic Rules [[14] FOL No reasoning or inference system.
Only representations specified.

Neural Logic Machines [8] FOL Horn clauses -

Probabilistic Logic Neural Network ~ FOL Horn clauses

Markov Logic Networks [25] FOL Only works for finite domains. Can-
not model arithemetic reasoning.

Delta ILP [10] Horn clauses This is for inductive logic program-
ming and not deductive reasoning.

Neural Theorem Proving [26] FOL without function symbols ~ This system performs knowledge

base completion rather than use
knowledge to help a machine learn-
ing system.

Marra et al. [21] present a system in which arbitrary first-order formulae can be converted into
optimization problems by defining first-order connectives and quantifiers as differentiable operations
over ground atoms. While general, this approach requires considering n* ground atoms where n
is the size of the domain and k is the number of variables in a formula. Cohen et al. [3]] present a
differentiable subset of first-order logic, TensorLog, that addresses this complexity issue. The subset
considered is made up of Datalog clauses [[13]]. While Datalog clauses can represent a wide range of
constraints, some of the problems we are interested in make it unwieldy (and almost impossible) to
use Datalog clauses (or even Horn clauses). For an example, see formula ¢3 in the next section. We
briefly list out and discuss a variety of other relevant approaches in Table [I]

3 Background and Problem Setting

While the framework we present is general enough to handle logics that have an inference system,
we demonstrate using standard first-order logic. In first-order logic, formulae represent information
about the world and can be used to encode knowledge and constraints about a problem or domain.
For a brief overview of the syntax and a commonly used proof calculus for first-order logic, see
Appendix A. For example, the formula ¢3 below states that there are at most three red items.

item = itemq
Vv

Jitem1itemaitems: Vitem (color(item) = red) — | item = itema
Vv

item = items

As discussed above, there are several advantages to using full first-order logic over logics such as
propositional logic or fragments of first-order logic. Particularly here, note that conditions on bounds
[min, mazx] of the number of objects are not expressible in propositional logic without restoring to
an exhaustive enumeration of conditions (which can be exponential in [min, maz] in the worst case
as opposed to linear in [min, max] in first-order logic). The tradeoff in moving to a more expressive
logic such as first-order logic is that inference can be more expensive. ¢3 is not a Horn clause.

Inference in first-order logic is done through many different proof calculi. The broad goal in inference
is to derive a goal formula ¢ from a set of formulae I". For instance, from the above formula stating
that there are not more than three objects, we can derive a formula ¢5 which states that there are not
more than five objects. If ¢ is derivable by I' we denote that by I' - ¢. In this example, we have
{#3} b ¢5. If a set of formulae I" can derive all formulae in another set I/, we also represent that by
rH1.

A proof is a record of one particular such derivation and can be represented by a sequence of formulae,
and inference rule names. A proof is minimal if no premise can be derived from the rest of the
premises. We denote the set of all minimal proofs of ¢ from I" by A(T', ¢).



Over the last few decades, several systems and techniques have been developed that make inference
and proof search in first-order logic tractable for many practical problems [29]. Moreover, in our
framework logic-based inference is performed offline during model compilation time. No logic-based
inference is then performed during training or deployment.

Problem Definition: Assume we have background knowledge encoded as a set of formulae I'.
We have a neural network 7 that has as part of its output a vector of probabilities p for some set of
formulae Y = {y1,¥2,. - ., yn}- Each component p; of p gives us the probability for some formula
y; € Y holding, i.e., prob(y;) = piE] As a shorthand, we denote probability for formula y; holding
by 1(y;). The set of formula is said to be logically mutually independent, if for all y;, Y — y; I/ y;.
Define the minimal negation of a formula as below:

— o ifp=-9¢

Y= . (D
—1)  otherwise

We extend the network to output probabilities for the minimal negation of each formula y € ) by

taking 7(y) = 1 — n(y). If Sis a set of formula, let S denote the set with all the formulae in S

minimally negated, S = {5 | s € S}. Wealsotake Y = Y U ).

For i) ¢ ), we define 7 to be as follows:

II ny) ifYty
n(y) = veY )

1 otherwise

Example: Consider a neural network classifying images of digits as odd, even or divisble by four.
I" could then be the following set of constraints:

r— odd — —even
| divisble; — even [’
The network takes as input an image and has three outputs {p1, p2, p3) such that prob(odd) = p1,

prob(divisbley) = pa, prob(even) = p3, prob(—odd) = 1 — py, prob(—divisbles) = 1 — po, and
prob(—even) =1 — ps.

4 A Differentiable Function from Constraints

We now define a function dr(7), a function of the set of first-order formula I" and the vector p, that
conveys how well the output of the neural network adheres to the constraints in I". The function dr(p)
should be differentiable so that it can be used in gradient descent training methods.

First, we define the weight of proving ¢ from a set of formula I" as shown below in[3] If we can not
derive ¢ from I', the weight is zero. Otherwise, the weight is the product of the probabilities of all the
formulae in ).

w@¢n) = max [ n) 3)

eA(T, .
PEMT.$) yEpremises(p)

We specify dr(n) as the sum of the weights of all possible ways to reach a contradiction when we
add to the constraints formulae in ).

dF(n) = Z W(FUYalﬂ?) “4)

Ye2y

dr(n) is a sum of product terms, where each product term is either 7(y;) standing in for y; or 1 —7(y;)
standing in for —y;, as shown in Figure [I]

"More precisely, this is equivalent to saying that the formula y; is true in some interpretation or model, e.g.
the real world, prob(W = y;) = ps.



Figure 1: Weighted Proof Tracing
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For a given neural network architecture, we have a fixed set of formulae ) = {yi,...,y,} that
are assigned weights or probabilites by the network. Equation 4] contains a sum over a powerset
of a set of formulae. While this term is computed only once per network architecture and set of
constraints, this computation can grow quite large if we add constraints during the course of a neural
network’s deployment. For monotonic logics, such as first-order logic, we note that if Y/ C Y and
TUY I/ ¢, then T UY' I/ ¢. We can use this information to reduce the amount of computation. If
wTUY,L,n)=0thenw(TUY'L,n)=0forallY' CY.

Note w(T', ¢, n) is differentiable if ) is differentiable. Therefore, the constraint loss term dr(n) is
differentiable if 7 is differentiable.

The number of terms in dr(7n) can grow quite large. To address this issue, we simply dr(n) by
applying the Quine McCluskey algorithm [22] for simplification of logic formulae. For computing
I' F ¢, we use Vampire, a state-of-the-art theorem prover for first-order logic (30} 24, [29].

Adding dr(n) to a Neural Network Given dr(n), we can either add it to the loss term in a neural
network (or any differentiable form of learning system) or use it to modify the outputs of any other
system. In the first approach, we use a new loss term as shown below:

loss (yt'ruea yp’r'ed) =C1 * loss(ytruw ypred) + co * dF (77) (ypred) (5)

In the second approach, given that output vector i from 7, we modify it by taking small steps in the
direction opposite of the gradient of the loss term:

7=9—aV(dr(n)) (6)

Interpretation The logic formulae I' can be thought of as dictating the outputs of the neural
network. The derived loss function can be thought of as increasing the loss when the network strays
away from the logic formuale I'.

5 Experiments

In this section, we present several experiments demonstrating the use of constraints in empircal
settings. For all the experiments, we use a system that we have implemented that takes in constraints
represented in standard TPTP notation and converts them into a Python function that can be used
with standard deep learning frameworksE] See the appendix for an example.

Experiment 1: MNIST Fashion Collection We consider labeling of multiple objects in an image.
We use items from MNIST fashion as objects. MNIST fashion is a drop-in replacement for MNIST
digits and is supposed to be more reflective of real world image processing tasks [32]. Assume that
we are given a set of images that contain objects from MNIST fashion. We might know that the
images satisfy certain conditions. For example, one set of conditions could specify there should be

2This system will be released with an open-source license.



Pullover, Ankle boot, Trouser, T-shirt/top, Sandal, Bag,  Pullover, Trouser, Bag, Shirt, Sandal, T-shirt/top, Trouser,
Dress, Sandal Trouser Ankle boot Ankle boot

Figure 2: Example Inputs

Figure 3: MNIST Fashion Multi-object Accuracies (low training data). Results are over 5 randomized
runs. We use ¢; = 1 — scaling_factor,ca = scaling_factor. Darker colors show increasing
training data. The horizontal axis shows the scaling factor and the vertical axis is accuracy. The
top row shows networks trained with constraint loss functions and the bottom row shows output
modification applied to the networks. Columns indicate fraction of missing labels.
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items in the image that let us assemble a complete set of clothing (footwear items, lower and upper
clothing items). The constraints could also specify that there should not be pairs of clothing items that
usually do not go together in the image (e.g. dresses and sneakers). We could also have constraints
that specify the minimum and/or maximum number of items in the images.

To model this scenario, we generate data that satisfies one such particular such set of conditions.
Some examples are shown in Figure [2] The constraints are shown in TPTP format in Appendix
B. To simulate missing data, we randomly drop a fraction of the labels. We then train and test
neural networks with and without the constraints at different levels of training data and with different
amounts of labels missing. Results are shown in figures[0land[d We can see that with a large fraction
of labels missing from the training data, constraints are helpful even when we train with large amounts
of data. When we have all training labels, we see there is not much improvement in using information
in the constraints. When we use only the constraint loss term, we see that performance of the network
collapses even when trained with more data.

Experiment 2: Transparently Debiasing with Constraints In the last few decades, there has
been a huge increase in machine learning applications that have had significant impact on human
lives. For example, machine learning systems are used to process loan applications, decide whether



Figure 4: MNIST Fashion multi-object accuracies (with 50 percent of labels dropped, c¢; = c3 = 1,
8 runs, shown with 95% confidence intervals). There are six sum terms in dr(n) as shown in the
appendix. We run ablation experiments by dropping each of the terms and keeping the rest. Training
was done with non ablated and ablated loss functions. Output modification was done only for the full
function. The figures show that dropping even a single term has a huge impact on the performance.
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defendants should be granted bail, screen job candidates etc. This has led to societal and historical
biases creeping into machine learning systems. To address this, there has been a flurry of research into
quantifying and removing bias in such systems [31]. Implementations such as AIF360 [2] provide
many such measures and algorithms for removing bias. It should be noted that, in general, it is not
possible for a system to satisfy multiple definitions of bias [4]].

In this experiment, we apply constraints to debias a random forest classifier when trained on the
income dataset [17]]. The goal is to predict whether a person earns above $50,000 given a certain
set of features. By convention, a label of 1 is desirable and 0 is undesirable. We are interested in
detecting and removing bias with respect to two features, race and sex. Many debiasing algorithms
remove bias by changing predictions that are in some ambiguous or uncertain zone. For example,
the algorithm presented by Kamiran et al. [15] achieves debiasing by flipping labels from O to 1 if
the data instance belongs to an unprivileged class (and vice-versa for privileged instances) and the
prediction probability for the label is in a small region around 0.5.

With constraints, we can develop debiasing algorithms that are more transparent and achieve a similar
effect. For instance, we can represent a procedure similar to the one by Kamiran et al. [[15] by using
the constraint:

I' = {(unprivileged(race) V unprivileged (sex)) — 1}

We then modify the outputs of the classifier using the above constraint and using[6| with v = 0.1 with
10 iterations. Figures [5aJand [5b|show the how the modified classifer performs with respect to the
base classifier. As the figures show, there is a slight improvement in many bias scores (lower score
magnitudes are better) without much drop in accuracy. Eventually, such constraints can be checked
against formalization of legal requirements that have been cast in first-order logic [9].

Experiment 3: MNIST Divisibility Classification In this experiment, we look at classifying
handwritten digits as odd, even and/or divisible by four. Our inputs are MNIST images [18] and
outputs are three binary labels indicating whether the input is odd, even or divisible by four. While
given enough data, modern neural networks can learn a proper distribution of the three outputs, we
consider a scenario where we have noisy labeled training data, as is common in many applications.
To simulate noisy labeled data, we flip each of the three labels with a probability p that we term as

the noise factor.
r odd — —even
= | divisble;, — even

We train with different amounts of training data and labeling noise, and test with 10,000 samples. For
adding in the constraint loss term, we set ¢c; = co = 1. Results are shown in Figure@ As can be seen
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Figure 5: Debiasing with constraints: Original accuracy 84.32%, modified accuracy: 84.29%

Figure 6: Overall Accuracy for Odd/Even/Four
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in the figure, when labeling noise is absent, there is a small improvement in accuracy when we train
with a very small amount of data. As the the noise increases, we get an improvement with constraints
even when we train with larger amounts of data.

6 Conclusion

We have presented a new form of differentiable functions derived via proofs from information
expressed in logics such as first-order logic. We then use these functions to integrate knowledge
and constraints about a problem or domain either in the loss function of a neural network or in
a modification layer after the outputs are computed by the neural network (or any other system).
Notably, the new function is syntactic in nature as opposed to semantic forms of similar loss functions
considered previously. This has advantages in translation of large constraints, and in the use of the
constraints themselves, as syntactic reasoning is more scalable for large domains. As far as we are
aware of, this is the first such work that combines general constraints in standard first-order logic
with a neural network. In future work, we will also be looking at more real-world datasets and
constraints. We also note that we have not specified the formal semantics for our system and we will
be investigating how our system fits in formally with classic logic-based systems.
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A First-order Logic Overview

We give a quick overview of the grammar of first-order logic below. For any given domain, we have a
signature that specifies the symbols that we can use to build formulae. We have a set of variables
Zg,x1,..., aset of constants cg, ¢y, ... and a set of function symbols f1, fo,.... Each function
symbol has an arity specified by arity[f;]. A term is any variable z;, constant ¢; or a function symbol
combined with other terms fy(t1, .. .,t,) such that n = arity|[fx]. The signature in the domain also
specifies a set of predicate symbols Py, Py . ... The predicate symbols have arities given by arity[F;].
A predicate symbol applied to a set of terms Py(t1,...,t,) such that n = arity[Py] gives us an
atomic formula A.

From the atomic formulae , we can build formulae using the following grammar:

A; A is atomic

1 N\ @2

¢:=< 1V o2, P1— P2
-0
Vr;¢, ;o

Semantics: An interpretation (or world) is any function from the atoms to truth values {T, L}.
Associated with each of the connectives {A, V, —, =} are truth functions that assign truth values to
the output formula given truth values for the input formulae. A set of formulae I' is said to model
or satisfy ¢ if all interpretations that make all formulae in I" true also make ¢ true. This denoted by
T = ¢. To keep the presentation brief, we present semantics and inference only for the propositional
subset.

Inference: Given a set of formulae I', we can syntactically maniuplate the formulae to derive new
formulae without considering truth value assignments. Such manipulations are known as proofs
or derivations. There are many such inference systems that let us check whether a formula ¢ is
derivable from I (such as natural deduction, tableau, resolution) [3]]. We focus on resolution which is
commonly used in many state-of-the-art automated reasoning systems.

In resolution, we convert a set of formulae into a canonical form, the conjunctive normal form. Every
formula is represented as set of conjunctions (c; A ¢ A ...) and every conjunct ¢; is a disjunction of
literals (c; = d; V da V ...). A literal d; is either an atom Y or its negation =Y.

There is one single rule in resolution (which amounts to a generalized form of modus ponens):

Resolution Scheme

diVdy...q...Vd, etVey...nq...Ven,
dl\/dz...\/dn\/el\/dg...\/em

The rule takes as input two clauses. If one of the clauses has an atom ¢ that is negated in the other
clause (—q), the two clauses can be combined. The output clause is a new clause with all the literals
in the two clauses except for ¢ and —g. We have a proof I" - ¢ if there exists some sequence of
resolution operations that produce ¢ given I'. Inference is then just simply search over the space of
clauses using the resolution scheme.
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B MNIST Constraints

Constraints for the MNIST Fashion experiment expressed in the TPTP format [28]]. Atoms y (i)
correspond to class ¢ in the MNIST Fashion dataset. al specifies that we need to have complete set
of clothing. a2 specifies a complete set of clothing has upper, lower and footwear. a3, a4, and a5
declare what goes into upper, lower and footwear categories. a6 declares dresses and sneakers don’t
go together. atleast_three_objs declares that we have at least three objects.

tff(decl, type, y: $int > $o).

tff(al, axiom, complete).

tff (a2, axiom, upper & lower & footwear <=> complete).
tff (a3, axiom, (y(0) | y(6) | y(3)) <=> upper).

tff (a4, axiom, (y(1) | y(3)) <=> lower).

tff(ab, axiom, (y(5) | y(7) | y(9)) <=> footwear).
tff (a6, axiom, ~(y(3) & y(7))).

\

—

D=

f a: t

(
|

1] IIA

tff (domain, :$i (y(X
X=01X I | X
X=51]X I | X

xiom, ![
1]
6 |

ol
non

\II\)N

n
X
X

o
©O

).

tff (atleast_three_objs, axiom, 7[X1:$int, X2:$int, X3:$int]:
(y(X1) &

v(X2) &

y(X3) &

(X1'= X2) & (X2!= X3) & (X3!= X1))
).

The listing below shows the generated Python code for the loss function derived from the above
constraints.

def constraint_loss_single(y_pred):
def y(i):
return y_pred[i]

def _y(i):
return 1 - y_pred[i]

loss = (_y(8) * _y(7) * _y(9)) + \
(Ly() * _y(3)) +\
(Ly(0) * _y(1) * _y(2) *x _y(4) * _y(6) * _y(8) * _y(9)) + \
(Ly(0) * _y(3) * _y(6)) + \
(Ly(0) * _y(1) * _y(2) *x _y(4) * _y(5) * _y(6) * _y(8)) + \

(y(3) * y(7))

return loss

12



C Properties
Lemma 1 (Monotonicity 1). If T' C I”, then dr(n) < dr/(n)

Proof. Since ' C TV, we have w(T', ¢, 1) < w(I”, ¢, 7). O
Lemma 2 (Monotonicity 2). If TV T, then dr/(n) > dr(n)

Proof. Since I'' = T, for every ' UY F, ¢ we have a corresponding IV UY F, ¢ such that
premises(p’) - premises(p). Using the fact that the proofs are minimal we can prove that n(p’) >

n(p), therefore w(T', ¢, 1) < w(I, ¢, 7).
O

Theorem 1 (Equivalence). If A" < AT, then dr/(n) = dr(n)

Proof. If AT & AT, then we have IV F T"and " - I and we can use the previous property. [
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D Models Used

CNN Model for MNIST Digits and Fashion-MNIST Random Forest Classifier
Layer (type) Output Shape Param # for Income Classification

input_1 (InputLayer) (None, 84, 84, 1) 0 Param Value

conv2d_1 (Conv2D) (None, 82, 82, 64) 640 bootstrap True
class_weight None

max_pooling2d_1 (MaxPooling2 (None, 41, 41, 64) 0 criterion gini
max_depth None

conv2d_2 (Conv2D) (None, 39, 39, 32) 18464 max_features ’auto’
max_leaf nodes None

max_pooling2d_2 (MaxPooling2 (None, 19, 19, 32) 0 min_impurity_decrease 0.0
min_impurity_split None

conv2d_3 (Conv2D) (None, 17, 17, 16) 4624 min_samples_leal 1

- - min_samples_split 2

max_pooling2d_3 (MaxPooling2 (None, 8, 8, 16) 0 min_weight_fraction_leaf 0.0

a 1 (@ ) (None, 8, 8, 16) 0 n_cstimators 10

ropout_ ropout one, 8, 8, njobs None

flatten_1 (Flatten) (None, 1024) 0 o0b_score False
random_state None

dense_1 (Dense) (None, 256) 262400 verbose 0
warm_start False

dropout_2 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 128) 32896

dropout_3 (Dropout) (None, 128) 0

dense_3 (Dense) (None, 64) 8256

dropout_4 (Dropout) (None, 64) 0

dense_4 (Dense) (None, 32) 2080

d1 (Dense) (None, 10) 330

Total params: 329,690
Trainable params: 329,690
Non-trainable params: O
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E MNIST Fashion: Expanded Results

Figure 7: MNIST Fashion Multi-object Accuracies (low training data). Results are over 5 randomized
runs. We use ¢; = 1 — scaling_factor,co = scaling_factor. Darker colors show increasing
training data. The horizontal axis shows the scaling factor and the vertical axis is accuracy. The
top row shows networks trained with constraint loss functions and the bottom row shows output
modification applied to the networks. Columns indicate fraction of missing labels. Probability of
missing a label: 0 and 0.1.
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Figure 8: MNIST Fashion Multi-object Accuracies (low training data). Results are over 5 randomized
runs. We use ¢; = 1 — scaling_factor,ca = scaling_factor. Darker colors show increasing
training data. The horizontal axis shows the scaling factor and the vertical axis is accuracy. The
top row shows networks trained with constraint loss functions and the bottom row shows output
modification applied to the networks. Columns indicate fraction of missing labels. Probability of
missing a label: 0.1 and 0.3.
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Figure 9: MNIST Fashion Multi-object Accuracies (low training data). Results are over 5 randomized
runs. We use ¢; = 1 — scaling_factor,co = scaling_factor. Darker colors show increasing
training data. The horizontal axis shows the scaling factor and the vertical axis is accuracy. The
top row shows networks trained with constraint loss functions and the bottom row shows output
modification applied to the networks. Columns indicate fraction of missing labels. Probability of
missing a label: 0.7 and 0.9
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