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Abstract

Moral responsibility is a major concern in autonomous systems, with applications
ranging from self-driving cars to kidney exchanges. Although there have been
recent attempts to formalise responsibility and blame, among similar notions, the
problem of learning within these formalisms has been unaddressed. From the
viewpoint of such systems, the urgent questions are: (a) How can models of moral
scenarios and blameworthiness be extracted and learnt automatically from data? (b)
How can judgements be computed effectively and efficiently, given the split-second
decision points faced by some systems? By building on constrained tractable
probabilistic learning, we propose a learning framework for inducing models of
such scenarios automatically from data and reasoning tractably from them. We
report on experiments that compare our system with human judgement in three
domains: lung cancer staging, teamwork management, and trolley problems.

1 Introduction

Moral responsibility is a major concern in autonomous systems. In applications ranging from self-
driving cars to kidney exchanges [12], contextualising and enabling judgements of morality and
blame is becoming a difficult challenge, owing in part to the philosophically vexing nature of these
notions. Within the context of interactions between humans and autonomous systems, the concept of
blameworthiness has been argued as being critical to effective collaboration, decision-making, and
to our thoughts about morality in general [25, 18]. Whilst there have been many formal definitions
of blame and moral responsibility put forward by philosophers, lawyers, and psychologists over the
decades, there have been relatively few that admit concrete computational implementations.

The limited number of implementations that do exist are typically based on hand-crafted or deter-
ministic rules that encode ethical principles, which can result in such systems being brittle, lacking
the flexibility and scalability offered by tractable probabilistic models and machine learning more
generally [3, 14]. With that said, many moral decision-making scenarios can be concisely captured
using a logical representation, and it also seems intuitively plausible that logical constraints may
arise in many such situations (e.g. it is forbidden to kill any human being). Thus, a framework
that incorporates both of these traditionally separate paradigms would seem most appropriate and
desirable in helping to facilitate "provably moral AI" [40]. This corresponds precisely to the hybrid
between the top-down (symbolic) and bottom-up (sub-symbolic) approaches discussed by Allen et al.
[2], of which (as far as we are aware) our implementation represents the first concrete instance.

We propose a learning framework for inducing models of moral scenarios and blameworthiness
automatically from data, and reasoning tractably from them. The framework leverages the tractable
learning paradigm [39, 11, 26], which can induce both high- and low- tree width graphical models
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with latent variables, and thus realises a deep probabilistic architecture. We remark that we do
not motivate any new definitions for moral responsibility, but show how an existing model can be
embedded in our learning framework. We suspect it should be possible to analogously embed other
definitions from the literature too. We then study the computational features of this framework.
Finally, we report on experiments regarding the alignment between automated and human judgements
of moral decision-making in three illustrative domains: lung cancer staging, teamwork management,
and trolley problems.

2 Preliminaries

2.1 Blameworthiness

We use the word blameworthiness to capture an important part of what can more broadly be described
as moral responsibility, and consider a set of definitions (taken directly from the original work,
with slight changes in notation for the sake of clarity and conciseness) put forward by Halpern and
Kleiman-Weiner [19] (henceforth HK). In HK, environments are modelled in terms of variables
and structural equations relating their values [20]. More formally, the variables are partitioned into
exogenous variables X external to the model in question, and endogenous variablesV that are internal
to the model and whose values are determined by those of the exogenous variables. A range function
R maps every variable to the set of possible values it may take. In any model, there exists one
structural equation FV : ×Y∈X∪V\{V}R(Y)→ R(V) for each V ∈ V.
Definition 1. A causal model M is a pair (S,F ) where S is a signature (X,V,R) and F is a
set of modifiable structural equations {FV : V ∈ V}. A causal setting is a pair (M, X) where
X ∈ ×X∈XR(X) is a context.

In general we denote an assignment of values to variables in a set Y as Y. Following HK, we restrict
our considerations to recursive models, in which, given a context X, the values of all variables inV
are uniquely determined.
Definition 2. A primitive event is an equation of the form V = v for some V ∈ V, v ∈ R(V). A
causal formula is denoted [Y ← Y]ϕ where Y ⊆ V and ϕ is a Boolean formula of primitive events.
This says that if the variables in Y were set to values Y (i.e. by intervention) then ϕ would hold. For
a causal formula ψ we write (M, X) � ψ if ψ is satisfied in causal setting (M, X).

An agent’s epistemic state is given by (Pr,K , U) whereK is a set of causal settings, Pr is a probability
distribution over this set, and U is utility function U : W → R≥0 on the set of worlds, where a
world w ∈ W is defined as a setting of values to all variables inV. wM,X denotes the unique world
determined by the causal setting (M, X).
Definition 3. We define how much more likely it is that ϕ will result from performing an action
a than from performing action a′ using:

δa,a′,ϕ = max

[ ∑
(M,X)∈J[A←a]ϕK

Pr(M, X) −
∑

(M,X)∈J[A←a′]ϕK

Pr(M, X)

]
, 0


where A ∈ V is a variable identified in order to capture an action of the agent and JψK = {(M, X) ∈
K : (M, X) � ψ} is the set of causal settings in which ψ (a causal formula) is satisfied.

The costs of actions are measured with respect to a set of outcome variables O ⊆ V whose values
are determined by an assignment to all other variables. In a given causal setting (M, X), OA←a
denotes the setting of the outcome variables when action a is performed and wM,O←OA←a,X denotes
the corresponding world.
Definition 4. The (expected) cost of a relative to O is:

c(a) =
∑

(M,X)∈K

Pr(M, X)
[
U(wM,X) −U(wM,O←OA←a,X)

]
Finally, HK introduce one last quantity N to measure how important the costs of actions are when
attributing blame (this varies according to the scenario). Specifically, as N → ∞ then dbN(a, a′,ϕ)→
δa,a′,ϕ and thus the less we care about cost. Note that blame is assumed to be non-negative and so it is
required that N > maxa∈Ac(a).
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Definition 5. The degree of blameworthiness of a for ϕ relative to a′ (given c and N) is:

dbN(a, a′,ϕ) = δa,a′,ϕ
N −max(c(a′) − c(a), 0)

N
The overall degree of blameworthiness of a for ϕ is then:

dbN(a,ϕ) = maxa′∈R(A)\{a}dbN(a, a′,ϕ))

For reasons of space we omit an example here, but include several when reporting the results of our
experiments. For further examples and discussions, we refer the reader to HK [19].

2.2 PSDDs

Since, in general, probabilistic inference is intractable [6], tractable learning has emerged as a recent
paradigm where one attempts to learn classes of Arithmetic Circuits (ACs), for which inference is
tractable [16, 26]. In particular, we use Probabilistic Sentential Decision Diagrams (PSDDs) [26]
which are tractable representations of a probability distribution over a propositional logic theory (a
set of sentences in propositional logic) represented by a Sentential Decision Diagram (SDD) [13].
PSDDs represent a complete, canonical class with respect to distributional representation, but can
also be naturally learnt with the inclusion of logical constraints or background knowledge.

Space precludes us from discussing SDDs and PSDDs in detail, but the main idea behind SDDs is to
factor the theory recursively as a binary tree: terminal nodes are either 1 or 0, and the decision nodes
are of the form (p1, s1), . . . , (pk, sk) where primes p1, . . . , pk are SDDs corresponding to the left
branch, subs s1, . . . , sk are SDDs corresponding to the right branch, and p1, . . . , pk form a partition
(the primes are consistent, mutually exclusive, and their disjunction p1 ∨ ...∨ pk is valid). In PSDDs,
each prime pi in a decision node (p1, s1), . . . , (pk, sk) is associated with a non-negative parameter θi
such that

∑k
i=1 θi = 1 and θi = 0 if and only if si = ⊥. Each terminal node also has a a parameter θ

such that 0 < θ < 1, and together these parameters can be used to capture probability distributions.

Most significantly, probabilistic queries, such as conditionals and marginals, can be computed in time
linear in the size of the model. PSDDs can be learnt from data [29], and the ability to encode logical
constraints into the model directly enforces sparsity which in turn can lead to increased accuracy
and decreased size. In our setting, we can draw parallels between these logical constraints and
deontological ethical principles (e.g. it is forbidden to kill another human being), and between learnt
distributions over decision-making scenarios (encoding preferences) and the utility functions used in
consequentialist ethical theories (where the moral value of an action depends on its consequences).

3 Blameworthiness Via PSDDs

We aim to leverage the learning of PSDDs, their tractable query interface, and their ability to handle
domain constraints for inducing models of moral scenarios.2 This is made possible by means of an
embedding that we sketch below, while also discussing assumptions and choices. At the outset, we
reiterate that we do not introduce new definitions here, but show how an existing one, that of HK, can
be embedded within a learning framework. Where there is any chance of ambiguity we denote the
original definitions with a superscript HK .

3.1 Variables

We distinguish between scenarios in which we do and do not model outcome variables; in the latter
case we haveV = D = O (this does not affect the notation in our later definitions, however). This is
because we do not assume that outcomes can always be recorded, and in some scenarios it makes
sense to think of decisions as an end in themselves.

Our range function R is defined by the scenario we model, but in practice we one-hot encode the vari-
ables and so the range of each is simply {0, 1}. A subset (possibly empty) of the structural equations

2Our technical development can leverage both parameter and (possibly partial) structure learning for PSDDs.
Of course, learning causal models is a challenging problem [1], and in this regard, probabilistic structure learning
is not assumed to be a recipe for causal discovery in general [36]. Rather, under the assumptions discussed later,
we are able to use our probabilistic model for causal reasoning.
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in F is implicitly encoded within the structure of the SDD underlying the PSDD, corresponding to
the logical constraints that remain true in every causal model M. The remaining equations are those
that vary depending on the causal model. Each possible assignment V given X corresponds to a set
of structural equations that combine with those encoded by the SDD to determine the values of the
variables inV given X, as we make the trivial assumption that all parentless variables are considered
exogenous. The PSDD then corresponds to the probability distribution Pr over K .

Our critical assumption here is that the signature S = (X,V,R) (the variables and the values they
may take) remains the same in all models, although the structural equations F (the ways in which said
variables are related) may vary. This is necessary both for our theoretical embedding and learning
PSDDs from decision-making data (where data points measure the same variables each time).

3.2 Probabilities

Thus, our distribution Pr : ×Y∈X∪D∪OR(Y)→ [0, 1], represented as PSDD, ranges over assignments
to variables instead of K . As a slight abuse of notation we write Pr(X, D, O). The key observation
needed to translate between these two distributions (we denote the original as PrHK), which relies
on our assumption above, is that each set of structural equations F together with a context X
deterministically leads to a unique, complete assignment V of the endogenous variables, which we
write (abusing notation again) as (F , X) |= V, though there may be many such sets of equations that
lead to the same assignment. Hence, for any context X and any assignment Y for Y ⊆ V we have:

Pr(X, Y) =
∑

M:(M,X)|=Y
PrHK(M, X) =

∑
F :((S,F ),X)|=Y

PrHK((S,F ), X) =
∑

F :(F ,X)|=Y
PrHK(F , X)

Given our assumptions and observations described above, the following proposition is immediate.
Proposition 1. Let PrHK be a probability distribution over a set of causal settings K , and assume
that the signature S = (X,V,R) in each causal setting M = (S,F ) remains fixed. Then there exists
a PSDD P representing a distribution Pr over the variables in X andV such that for any context X,
the joint probability of Y also occurring (where Y ⊆ V) is the same under both PrHK and Pr.

We view a Boolean formula of primitive events (possibly resulting from decision A) as a function
ϕ : ×Y∈O∪D\{A}R(Y) → {0, 1} that returns 1 if the original formula is satisfied by the assignment, or
0 otherwise. We write D\a for a general vector of values overD\ {A}, and hence ϕ(D\a, O). Here,
the probability of ϕ occurring given that action a is performed (i.e. conditioning on intervention)∑

(M,X)∈J[A←a]ϕK Pr(M, X) given by HK can also be written as Pr(ϕ|do(a)). In general, it is not the
case that Pr(ϕ|do(a)) = Pr(ϕ|a), but by assuming that the direct causes of action a are captured by
the context X and that the other decisions and outcomes D\a and O are in turn caused by X and a we
may use the back-door criterion [37] with X as a sufficient set to write:

Pr(D\a, O|do(a)) =
∑
X

Pr(D\a, O|a, X) Pr(X)

and thus may use
∑

D\a,O,X ϕ(D\a, O) Pr(D\a, O|a, X) Pr(X) for Pr(ϕ|do(a)). In order not to re-
learn a separate model for each scenario we also allow the user of our system the option of specifying
a current, alternative distribution over contexts Pr′(X), which may replace Pr(X) in each summand.

3.3 Utilities

We now consider our utility function U, the output of which we assume is normalised to the range
[0, 1].3 We avoid unnecessary extra notation by defining the utility function in terms of X, D, and
O = (O1, ..., On) instead of worlds w. In our implementation we allow the user to input an existing
utility function or to learn one from data. In the latter case the user further specifies whether or
not the function should be context-relative, i.e. whether we have U(O) or U(O; X) (our notation)
as, in some cases, how good a certain outcome O is depends on the context X. Similarly, the user
also decides whether the function should be linear in the outcome variables, in which case the final
utility is U(O) =

∑
i Ui(Oi) or U(O; X) =

∑
i Ui(Oi; X) respectively (where we assume that each

3This has no effect on our calculations as we only use cardinal utility functions with bounded ranges, which
are invariant to positive affine transformation.
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Ui(Oi; X), Ui(Oi) ≥ 0). Here the utility function is simply a vector of weights and the total utility of
an outcome is the dot product of this vector with the vector of outcome variables.

When learning utility functions, the key assumption we make (before normalisation) is that the
probability of a certain decision being made given a context is proportional to some function of the
expected utility of that decision in the context, i.e. Pr(D|X) ∝ f (

∑
O U(O) Pr(O|D, X)). Note that

here a decision is a general assignment D, not a single action a, and U(O) may be context-relative
and/or linear in the outcome variables. In our implemented demonstration system we make the
simplifying assumption that f is the identity function, however this is by no means necessary. In
general we may choose any invertible function f (on the range [0, 1]) and simply apply f −1 to each
datum Pr(D|X) before fitting our utility function. In general we should expect f to be a positive
monotonic transformation with non-negative range so as to preserve the ordinality of utilities. For
example, using f (x) = exp(x)− 1 allows us to capture (a slightly modified version of) the commonly-
used Logistic Quantal Response model of bounded rationality in which the likelihood of a certain
decision is proportional to the exponential of the resulting expected utility [30].

This proportionality assumption is critical to the learning procedure in our implementation, however
we believe it is in fact relatively uncontroversial, and can be restated as the simple principle that an
agent is more likely to choose a decision that leads to a higher expected utility than one that leads
to a lower expected utility. Of course decisions are not always representative of utility functions
(consider a smoker who wishes to quit but cannot due to their addiction), and attempting to learn the
preferences of fallible, inconsistent agents such as humans is an interesting, difficult problem. While
outside the scope of our current work, we refer the reader to Evans et al. for a recent discussion [15].

3.4 Costs and Blameworthiness

We also adapt the cost function given in HK, denoted cHK . As actions do not deterministically lead to
outcomes in our work, we cannot use OA←a to represent the specific outcome when decision a is made
(in some context). For our purposes it suffices to use c(a) = −

∑
O,X U(O; X) Pr(O|a, X) Pr(X) or

c(a) = −
∑

O,X U(O) Pr(O|a, X) Pr(X), depending on whether U is context-relative or not. This
is simply the negative expected utility over all contexts, conditioning by intervention on decision
A← a. Using our conversion between PrHK and Pr, the back-door criterion [37], and our assumption
that action a is not caused by the other endogenous variables (i.e. X is a sufficient set for A), it is a
straightforward exercise in algebraic manipulation to show the following proposition.
Proposition 2. Let cHK be a cost function determined using a distribution PrHK and utility function
U. Then, given an equivalent distribution Pr (via the assumptions and result of Proposition 1) and
the assumption that X forms a sufficient set for any action variable A, the cost function c determined
using Pr and U is such that for any values a, a′ of A: c(a′) − c(a) = cHK(a′) − cHK(a).

Again, Pr(X) can also be replaced by some other distribution Pr′(X) so that the current model can be
re-used in different scenarios. Given δa,a′,ϕ and c, both dbN(a, a′,ϕ) and dbN(a,ϕ) are computed as
in HK, although we instead require that N > −mina∈Ac(a) (the equivalence of this condition to the
one in HK is an easy exercise). With this the embedding is complete.
Proposition 3. Let Pr and c be equivalents of PrHK and cHK under the assumptions and results
described in Propositions 1 and 2. Then for any values a, a′ of any action variable A ∈ V, for any
Boolean formula ϕ, and any valid measure of cost importance N, the values of δa,a′,ϕ, dbN(a, a′,ϕ),
and dbN(a,ϕ) are the same in our embedding as in HK.

4 Experiments and Results

Details of our implementation can be found in Appendix A, with associated complexity results in
Appendix B. The packaged version (including full documentation) will be made available online as
part of an extended technical report [21]. We learnt several models using a selection of datasets from
varying domains in order to test our hypotheses. In particular we answer three questions in each case:
(Q1) does our system learn the correct overall probability distribution? (Q2) does our system capture
the correct utility function? (Q3) does our system produce reasonable blameworthiness scores? In this
section we first summarise the results from our three experiments before providing a more in-depth
analysis of our final experiment as an example. We direct the interested reader to Appendix C for
results from the other two experiments. Appendix D contains summaries of our datasets.
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4.1 Summary

We performed experiments on data from three different domains. In Lung Cancer Staging we used
a synthetic dataset generated from the lung cancer staging influence diagram given in [32]. The
data was generated assuming that the overall decision strategy recommended in the original paper is
followed with some high probability at each decision point. The Teamwork Management experiment
uses a recently collected dataset of human decision-making in teamwork management [44]. This
data was recorded from over 1000 participants as they played a game that simulates task allocation
processes in a management environment, and includes self-reported emotional responses from each
participant based on their performance. Finally, in Trolley Problems we devised our own experimental
setup with human participants, using a small-scale survey (documents and data are included in the
package [21]) to gather data about hypothetical moral decision-making scenarios. These scenarios
took the form of variants on the famous trolley problem [42].

For (Q1) we measure the overall log likelihood of the models learnt by our system on training,
validation, and test datasets (see Table 1). A full comparison across a range of similar models and
learning techniques is beyond the scope of our work here, although to provide some evidence of the
competitiveness of PSDDs we include the log likelihood scores of a sum-product network (SPN),
another tractable probabilistic model, created using Tachyon [23] as a benchmark. We also compare
the sizes (measured by the number of nodes) and the log likelihoods of PSDDs learnt with and
without logical constraints in order to demonstrate the effectiveness of the former approach.

Table 1: Log likelihoods and sizes of the constrained PSDDs (the models we use in our system: *),
unconstrained PSDDs, and the SPNs learnt in our three experiments.

Model Training Validation Test Size
PSDD* -2.047 -2.046 -2.063 134

1 PSDD -2.550 -2.549 -2.564 436
SPN -3.139 -3.143 -3.158 1430

PSDD* -5.541 -5.507 -5.457 370
2 PSDD -5.637 -5.619 -5.556 931

SPN -7.734 -7.708 -7.658 3550

PSDD* -4.440 -4.510 -4.785 368
3 PSDD -6.189 -6.014 -6.529 511

SPN -15.513 -16.043 -15.765 3207

Answering (Q2) is more difficult, as self-reported measures of utility (or other proxy metrics, such as
life expectancy in Lung Cancer Staging, for example) may form an unreliable baseline. In general, our
models are able to match preferences up to ordinality in most cases, but the cardinal representations
of utilities depends greatly on the function f in the proportionality relationship between expected
decision probabilities and expected utilities. The exact choice of f is highly domain-dependent and
an area for further experimentation in future.

In attempting to answer (Q3) we divide our question into two parts: does the system attribute no
blame in the correct cases, and does the system attribute more blame in the cases we would expect it
to (and less in others)? Needless to say, it is very difficult (perhaps even impossible, at least without an
extensive survey of human opinions) to produce an appropriate metric for how correct our attributions
of blame are, but we suggest that these two criteria are the most fundamental and capture the core of
what we want to evaluate. We successfully queried our models in a variety of settings corresponding
to the two questions above and present representative examples below.

4.2 Trolley Problems

In this experiment we extend the well-known trolley problem, as is not uncommon in the literature
[5], by introducing a series of different characters that might be on either track: one person, five
people, 100 people, one’s pet, one’s best friend, and one’s family. We also add two further decision
options: pushing whoever is on the side track into the way of the train in order to save whoever is
on the main track, and sacrificing oneself by jumping in front of the train, saving both characters in
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the process. Our survey then took the form of asking each participant which of the four actions they
would perform (the fourth being inaction) given each possible permutation of the six characters on
the main and side tracks (we assume that a character could not appear on both tracks in the same
scenario). The general setup can be seen in Figure 1, with locations A and B denoting the locations of
people on the main track and side track respectively.

Figure 1: A cartoon given to participants showing the layout of the experimental scenario and the four
possible options. Clockwise from top (surrounding the face symbol) these are: sacrificing oneself,
flipping the switch, inaction, and pushing the character at B onto the main track. Locations A and B
are instantiated by particular characters depending on the context.

Last of all, we added a probabilistic element to our scenarios whereby the switch only works with
probability 0.6, and pushing the character at location B onto the main track in order to stop the train
succeeds with probability 0.8. This was used to account for the fact that people are generally more
averse to actively pushing someone than to flipping a switch [41], and people are certainly more
averse to sacrificing themselves than doing either of the former. However, depending on how much
one values the character on the main track’s life, one might be prepared to perform a less desirable
action in order to increase their chance of survival.

In answering (Q1) we investigate how well our model serves as a representation of the aggregated
decision preferences of participants by calculating how likely the system would be to make particular
decisions in each of the 30 contexts and comparing this with the average across participants in the
survey. For reasons of space we focus here on a representative subset of these comparisons: namely,
the five possible scenarios in which the best friend character is on the main track (see Figure 2). In
general, the model’s predictions are similar to the answers given in the survey, although the effect of
smoothing our distribution during learning is noticeable, especially due to the fact that the model was
learnt with relatively few data points. Despite this handicap, the most likely decision in any of the
30 contexts according to the model is in fact the majority decision in the survey, with the ranking of
other decisions in each context also highly accurate.

Survey Answers
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Figure 2: A comparison of the decisions made by participants and the predictions of our model in
each of the five scenarios in which the best friend character is on the main track (A).
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Unlike our other two experiments, the survey data does not explicitly contain any utility information,
meaning our system was forced to learn a utility function by using the probability distribution
encoded by the PSDD. Within the decision-making scenarios we presented, it is plausible that the
decisions made by participants were guided by weights that they assigned to the lives of each of the
six characters and to their own life. Given that each of these is captured by a particular outcome
variable we chose to construct a utility function that was linear in said variables. We also chose to
make the utility function insensitive to context, as we would not expect how much one values the life
of a particular character to depend on which track that character was on, or whether they were on a
track at all.

For (Q2), with no existing utility data to compare our learnt function, we interpreted the survival rates
of each character as the approximate weight assigned to their lives by the participants. While the
survival rate is a non-deterministic function of the decisions made in each context, we assume that
over the experiment these rates average out enough for us to make a meaningful comparison with the
weights learnt by our model. A visual representation of this comparison can be seen in Figure 3. It
is immediately obvious that our system has captured the correct utility function to a high degree of
accuracy. With that said, our assumption about using survival rates as a proxy for real utility weights
does lend itself to favourable comparison with a utility function learnt from a probability distribution
over contexts, decisions, and outcomes (which therefore includes survival rates). Given the setup of
the experiment, however, this assumption seems justified and, furthermore, to be in line with how
most of the participants answered the survey.

1 Person

5 People

100 People Pet

Best F
riend

Family You
0

0.05

0.1

0.15

0.2

0.25

Survival Rate As A Fraction Of All Survivals
Learned Outcome Variable Weight (Utility)

Figure 3: A comparison between the average survival rates of the seven characters (including the
participants in the survey), normalised to sum to one, and the corresponding utility function weights
learnt by our system.

Because of the symmetric nature of the set of contexts in our experiment, the probability of a particular
character surviving as a result of a particular fixed action across all contexts is just the same as the
probability of that character not surviving. Hence in answering (Q3) we use our system’s feature
of being able to accept particular distributions Pr′ over the contexts in which we wish to attribute
blame, allowing us to focus only on particular scenarios. Regarding the first part of (Q3), clearly
in any of the possible contexts one should not be blamed at all for the the death of the character on
the main track for flipping the switch (F) as opposed to inaction (I), because in the latter case they
will die with certainty, but not in the former.4 Choosing a scenario arbitrarily to illustrate this point,
with one person on the side track and five people on the main track, we have dbN(F, I,¬L5) = 0
and dbN(F,¬L5) = 0.307 (with our measure of cost importance N = 0.762, 1.1 times the negative
minimum cost of any action).

4Note that this is not to say one would not be blameworthy when compared to all other actions as one could,
for example, have sacrificed oneself instead, saving all other lives with certainty.
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For the second part of (Q3), consider the scenario in which there is a large crowd of a hundred or so
people on the main track, but one is unable to tell from a distance if the five or so people on the side
track are strangers or one’s family. The more likely it is that the family is on the side track, the more
responsible one is for their deaths (¬LFa) if one, say, flips the switch (F) to divert the train. Conversely,
we also expect there to be less blame for the deaths of the 100 people (¬L100) say, if one did nothing
(I), the more likely it is that the family is on the side track (because the cost, for the participant
at least, of diverting the train is higher). We compare cases where there is a 0.3 or 0.6 probability
that the family is on the side track and for all calculations use the cost importance measure N = 1.
Therefore, not only would we expect the blame for the death of the family to be higher when pulling
the switch in the latter case, we would expect the value to be approximately twice as high as in the
former case. Accordingly, we compute values dbN(F,¬LFa) = 0.264 and dbN(F,¬LFa) = 0.554
respectively. Similarly, when considering blame for the deaths of the 100 people due inaction, we
find that dbN(I,¬L100) = 0.153 in the former case and that dbN(I,¬L100) = 0.110 in the latter case
(when the cost of performing another action is higher).

5 Related Work

Our work here is differentiated from related efforts in two main ways: jointly addressing the automated
(constrained) learning of models of moral scenarios and tractable reasoning. We discuss other efforts
below. As mentioned before, we do not motivate new definitions for moral responsibility here
but draw on HK which, in turn, is based upon earlier work on responsibility [10] and causality
[20]. Their work is also related to the intentions model [27] which considers predictions about the
moral permissibility of actions via influence diagrams, though there is no emphasis on learning or
tractability. In fact, the use of tractable architectures for decision-making itself is recent [8, 31].
Choi et al. employ PSDDs to learn distributions over preference rankings in a work not dissimilar
to our own [11]. The main distinction is that the variables in this distribution are the positions of
items within preference lists, as opposed to the items themselves. An important part of learning a
model of moral decision-making is in learning a utility function. This is often referred to as inverse
reinforcement learning (IRL) [33, 7]. Our current implementation considers a simple approach for
learning utilities (similar to Nielsen and Jensen [34]), but more involved paradigms could indeed
have been used. One restriction we faced when performing our experiments was the relative lack
of appropriate datasets. Recent work by Jentzsch et al. indicates that language corpora may form
suitable resources from which data about ethical norms and moral decision-making may be extracted
[22]. Our contributions here are related to the body of work surrounding MIT’s Moral Machine
experiment [5]. For example, Kim et al. [24] build on earlier theoretical work [28] by developing a
computational model of moral decision-making whose predictions they test against Moral Machine
data. Their focus is on learning abstract moral principles via hierarchical Bayesian inference, and
although our framework can be used to these ends, it is also flexible with respect to different contexts,
and allows constraints on learnt models. Noothigattu et al. develop a method of aggregating the
preferences of all participants (again, a secondary feature of our system) in order to make a given
decision [35]. However, due to the large numbers of such preference orderings, tractability issues
arise and so sampling must be used. Recent work by Shaw et al. [40] has sought to address the
tension between learnt models of moral decision-making and provable guarantees, and there are
several other high-level overviews of strategies for creating moral decision-making frameworks in AI
[12, 17]. We refer the reader to these works for more discussions.

6 Conclusion

Our system utilises the definition of decision-making scenarios in HK, and at the same time exploits
many of the desirable properties of PSDDs (such as tractability, semantically meaningful parameters,
and logically constrained learning). It is flexible in its usage, allowing various inputs and specifications.
In general, the models in our experiments are accurate representations of the distributions over the
moral scenarios that they are learnt from. Our learnt utility functions, while simple in nature, are still
able to capture subtle details and in some scenarios are able to match human preferences with high
accuracy using very little data. With these two elements we are able to generate blameworthiness
scores that are, prima facie, in line with human intuitions. We hope that our work here goes some
way towards bridging the gap between the existing philosophical work on moral responsibility and
the existing technical work on decision-making in automated systems.
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Appendix A: Implementation

The importance of having implementable models of moral reasoning has been stressed by Charisi et
al. [9] amongst others. Our demonstration system runs from the command line and prompts the user
for a series of inputs including: data; existing PSDDs, SDDs, or vtrees; logical constraints; utility
function specifications; variable descriptions; and finally the decisions, outcomes, and other details
needed to compute a particular blameworthiness score. These inputs and any outputs from the system
are saved and thus each model and its results can be easily accessed and re-used if needed. Note
that we assume each datum is a sequence of fully observed values for binary (possibly as a result
of one-hot encoding) variables that correspond to the context, the decisions made, and the resulting
outcome, if recorded. Our implementation makes use of two existing resources: The SDD Package
2.0 [4], an open-source system for creating and managing SDDs, including compiling them from
logical constraints; and LearnPSDD [29], a recently developed set of algorithms that can be used to
learn the parameters and structure of PSDDs from data, learn vtrees from data, and to convert SDDs
into PSDDs. The resulting functionalities of our system can then be broken down into four broad
areas (a high-level overview of the complete structure of the demonstration system is provided in the
package documentation [21]):

• Building and managing models, including converting logical constraints specified by the user
in simple infix notation to restrictions upon the learnt model. For example, (A ∧ B) ↔ C
can be entered as a command line prompt using =(&(A,B),C).

• Performing inference by evaluating the model or by calculating the most probable evidence
(MPE), both possibly given partial evidence. Each of our inference algorithms are linear in
the size of the model, and are based on pseudocode given in [26] and [38] respectively.

• Learning utility functions from data, whose properties (such as being linear or being context-
relative) are specified by the user in advance. This learning is done by forming a matrix
equation representing our assumed proportionality relationship across all decisions and con-
texts, then solving to find utilities using non-negative linear regression with L2 regularisation
(equivalent to solving a quadratic program).

• Computing blameworthiness by efficiently calculating the key quantities from our embed-
ding, using parameters from particular queries given by the user. Results are then displayed
in natural language and automatically saved for future reference.
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Appendix B: Complexity Results

Given our concerns over tractability we provide several computational complexity results for our
embedding. Basic results were given in [19], but only in terms of the computations being polynomial
in |M|, |K|, and |R(A)|. Here we provide more detailed results that are specific to our embedding
and to the properties of PSDDs. The complexity of calculating blameworthiness scores depends on
whether the user specifies an alternative distribution Pr′, although in practice this is unlikely to have a
major effect on tractability. Finally, note that we assume here that the PSDD and utility function are
given in advance and so we do not consider the computational cost of learning. This parallels the
results in HK, in which only the cost of reasoning is considered (there is no mention of how their
models are obtained). In general, guarantees within the tractable learning paradigm are provided
for tractable inference within learnt models, but not for the learning procedure itself, which is often
approximate [43]. A summary of our results is given in Table 2.

Table 2: Time complexities for each of the key terms that we compute. If the user specifies an
extra distribution Pr′ over contexts, then the complexity is given by the expressions below with each
occurrence of the term |P| replaced by |P|+ Q, where O(Q) is the time taken to evaluate Pr′.

Term Time Complexity

δa,a′,ϕ O(2|X|+|D|+|O|(|ϕ|+ |P|))
c(a) O(2|X|+|O|(U + |P|))
dbN(a, a′,ϕ) O(2|X|+|O|(U + 2|D|(|ϕ|+ |P|)))
dbN(a,ϕ) O(|R(A)|2|X|+|O|(U + 2|D|(|ϕ|+ |P|)))

Here, O(|P|) is the time taken to evaluate the PSDD P where |P| is the size of the PSDD, measured as
the number of parameters; O(U) is the time taken to evaluate the utility function; and O(|ϕ|) is the
time taken to evaluate the Boolean function ϕ, where |ϕ| measures the number of Boolean connectives
in ϕ. We observe that all of the final time complexities are exponential in the size of at least some
subset of the variables. This is a result of the Boolean representation; our results are, in fact, more
tightly bounded versions of those in HK, which are polynomial in the size of |K| = O(2|X|+|D|+|O|).
In practice, however, we only sum over worlds with non-zero probability of occurring. Using PSDDs
allows us to exploit this fact in ways that other models cannot, as we can logically constrain the
model to have zero probability on any impossible world. Thus, when calculating blameworthiness we
can ignore a great many of the terms in each sum and speed up computation dramatically. To give
some concrete examples, the model counts of the PSDDs in our experiments were 52, 4800, and 180
out of 212, 221, and 223 possible variable assignments, respectively.

Appendix C: Further Experiments

Lung Cancer Staging

We use a synthetic dataset generated with the lung cancer staging influence diagram given in [32].
The data was generated assuming that the overall decision strategy recommended in the original
paper is followed with some high probability at each decision point. In this strategy, a thoractomy is
the usual treatment unless the patient has mediastinal metastases, in which case a thoractomy will
not result in greater life expectancy than the lower risk option of radiation therapy, which is then the
preferred treatment. The first decision made is whether a CT scan should be performed to test for
mediastinal metastases, the second is whether to perform a mediastinoscopy. If the CT scan results
are positive for mediastinal metastases then a mediastinoscopy is usually recommended in order to
provide a second check, but if the CT scan result is negative then a mediastinoscopy is not seen as
worth the extra risk involved in the operation. Possible outcomes are determined by variables that
indicate whether the patient survives the diagnosis procedure and survives the treatment, and utility is
measured by life expectancy.

For (Q1) we again measure the overall log likelihood of the models learnt by our system on training,
validation, and test datasets. In particular, our model is able to recover the artificial decision-making
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strategy well (see Figure 4); at most points of the staging procedure the model learns a very similar
distribution over decisions, and in all cases the correct decision is made the majority of times.

Answering (Q2) here is more difficult as the given utilities are not necessarily such that our decisions
are linearly proportional to the expected utility of that decision. However, our strategy was chosen
so as to maximise expected utility in the majority of cases. Thus, when comparing the given life
expectancies with the learnt utility function, we still expect the same ordinality of utility values,
even if not the same cardinality. In particular, our function assigns maximal utility (1.000) to the
successful performing of a thoractomy when the patient does not have mediastinal metastases (the
optimal scenario), and any scenario in which the patient dies has markedly lower utility (mean value
0.134).
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Figure 4: A comparison between the five probability values specified in our data generation process
and the corresponding values learnt by our system from this data.

Regarding the first part of (Q3), one case in which we have blameworthiness scores of zero is when
performing the action being judged is less likely to result in the outcome we are concerned with
than the action(s) we are comparing it to. The chance of the patient dying in the diagnostic process
(¬S DP) is increased if a mediastinoscopy (M) is performed, hence the blameworthiness for such
a death due to not performing a mediastinoscopy should be zero. As expected, our model assigns
dbN(¬M, M,¬S DP) = 0. To answer the second part of (Q3), we show that the system produces
higher blameworthiness scores when a negative outcome is more likely to occur (assuming the
actions being compared have relatively similar costs). For example, in the case where the patient
does not have mediastinal metastases then the best treatment is a thoractomy, but a thoractomy will
not be performed if the result of the last diagnostic test performed is positive. The specificity of
a mediastinoscopy is higher than that of a CT scan, hence a CT scan is more likely to produce a
false positive and thus (assuming no mediastinoscopy is performed as a second check) lead to the
wrong treatment.5 In the case where only one diagnostic procedure is performed we therefore have
a higher degree of blame attributed to the decision to conduct a CT scan (0.013) as opposed to a
mediastinoscopy (0.000), where we use N = 1.

Teamwork Management

Our second experiment uses a recently collected dataset of human decision-making in teamwork
management [44]. This data was recorded from over 1000 participants as they played a game that
simulates task allocation processes in a management environment. In each level of the game the
player has different tasks to allocate to a group of virtual workers that have different attributes and
capabilities. The tasks vary in difficulty, value, and time requirements, and the player gains feedback
from the virtual workers as tasks are completed. At the end of the level the player receives a score
based on the quality and timeliness of their work. Finally, the player is asked to record their emotional

5Note that even though a mediastinoscopy has a higher cost (as the patient is more likely to die if it is
performed), it should not be enough to outweigh the test’s accuracy in this circumstance.
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response to the result of the game in terms of scores corresponding to six basic emotions. We simplify
matters slightly by considering only the self-declared management strategy of the player as our
decisions. Within the game this is recorded by five check-boxes at the end of the level that are not
mutually exclusive, giving 32 possible overall strategies. These strategy choices concern methods of
task allocation such as load-balancing (keeping each worker’s workload roughly even) and skill-based
(assigning tasks by how likely the worker is to complete the task well and on time), amongst others.
We also measure utility purely by the self-reported happiness of the player, rather than any other
emotions.
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Figure 5: The log probability assigned to each possible decision strategy across all contexts by our
model, compared to the log proportion of times each strategy was used in the six levels of the game
by participants. Strategies are sorted in ascending order by their proportion of use in level 1 and gaps
in each plot represent strategies never used in that game level.

As part of our answer to (Q1) we investigate how often the model would employ each of the 32
possible strategies (where a strategy is represented by an assignment of values to the binary indicator
decision variables) compared to the average participant (across all contexts), which can be seen in
Figure 5. In general the learnt probabilities are similar to the actual proportions in the data, though
noisier. The discrepancies are more noticeable (though understandably so) for decisions that were
made very rarely, perhaps only once or twice in the entire dataset. These differences are also partly
due to smoothing (i.e. all strategies have a non-zero probability of being played).

For (Q2) we use the self-reported happiness scores to investigate our assumption that the number
of times a decision is made is (linearly) proportional to the expected utility based on that decision.
In order to do this we split the data up based on the context (game level) and produce a scatter
plot (Figure 6) of the proportion of times a set of decisions is made against the average utility
(happiness score) of that decision. Overall there is no obvious positive linear correlation as our
original assumption would imply, although this could be because of any one or combination of the
following reasons: players do not play enough rounds of the game to find out which strategies reliably
lead to higher scores and thus (presumably) higher utilities; players do not accurately self-report their
strategies; or players’ strategies have relatively little impact on their overall utility based on the result
of the game. We recall here that our assumption essentially comes down to supposing that people
more often make decisions that result in greater utilities. The eminent plausibility of this statement,
along with the relatively high likelihood of at least one of the factors in the list above means we do
not have enough evidence here to refute the statement, although certainly further empirical work is
required in order to demonstrate its truth.

Investigating this discrepancy further, we learnt a utility function (linear and context-relative) from
the data and inspected the average weights given to the outcome variables (see right plot in Figure 7).
A correct function should place higher weights on the outcome variables corresponding to higher
ratings, which is true for timeliness, but not quite true for quality as the top rating is weighted only
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Figure 6: Each point is a decision strategy in a level of the game; we compare the proportion of times
it is used against the average self-reported utility that results from it. Each line is a least-squares best
fit to the points in that level.

third highest. We found that the learnt utility weights are in fact almost identical to the distribution
of the outcomes in the data (see left plot in Figure 7). Because our utility weights were learnt on
the assumption that players more often use strategies that will lead to better expected outcomes,
the similarity between these two graphs adds further weight to our suggestion that, in fact, the
self-reported strategies of players have very little to do with the final outcome.
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Figure 7: A comparison of the learnt utility weights for each of the outcome variables (to the right)
and the proportion of times each outcome occurs in the data (to the left).

To answer (Q3) we examine cases in which the blameworthiness score should be zero, and then
compare cases that should have lower or higher scores with respect to one another. Once again,
comprehensive descriptions of each of our tested queries are omitted for reasons of space, but here
we present some representative examples.6 Firstly, we considered level 1 of the game by choosing an
alternative distribution Pr′ over contexts when generating our scores. Here a player is less likely to
receive a low rating for quality (Q1 or Q2) if they employ a skill-based strategy where tasks are more
frequently allocated to better workers (S ). As expected, our system returns dbN(S ,¬S , Q1 ∨Q2) = 0.
Secondly, we look at the timeliness outcomes. A player is less likely to obtain the top timeliness

6In all of the blameworthiness scores below we use the cost importance measure N = 1.
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rating (T5) if they do not use a strategy that uniformly allocates tasks (U) compared to their not using
a random strategy of allocation (R). Accordingly, we find that dbN(¬U,¬T5) > dbN(¬R,¬T5), and
more specifically we have dbN(¬U,¬T5) = 0.002 and dbN(¬R,¬T5) = 0 (i.e. a player should
avoid using a random strategy completely if they wish to obtain the top timeliness rating).

Appendix D: Dataset Summaries

The full set of data, source code, and other supplementary materials are included within a package
which will be made available online upon publication of an extended version of this work. Here
we provide brief summaries of the three datasets used in our experiments, including the variable
encoding used for each domain and the underlying constraints.

Table 3: A summary of the lung cancer staging data used in our first experiment.
Number of data points 100000
Number of variables 12
Context variables (X) Mediastinal Metastases (MM), CT Positive (CT+), CT Neg-

ative (CT−), No CT (CTN/A), Mediastinoscopy Positive
(M+), Mediastinoscopy Negative (M−), No Mediastinoscopy
(MN/A)

Decision variables (D) Perform CT (CT ), Perform Mediastinoscopy (M)
Outcome variables (O) Perform Thoractomy (T ), Diagnosis Procedures Survived

(S DP), Treatment Survived (S T )
Constraints (CT+ ∨CT−)↔ CT

CTN/A ↔ ¬CT
(M+ ∨M−)↔ M
MN/A ↔ ¬M
M− → T
M+ → ¬T
(CT− ∧¬M)→ T
(CT+ ∧¬M)→ ¬T
¬S DP → M
¬(CT+ ∧CT−)
¬(M+ ∧M−)
¬S DP → ¬S T

Model count 52
Utilities given? Yes (life expectancy)

Table 4: A summary of the teamwork management data used in our second experiment.
Number of data points 7446
Number of variables 21
Context variables (X) Level 1 (L1), ... , Level 6 (L6)
Decision variables (D) Other (O), Load-balancing (L), Uniform (U), Skill-based

(S ), Random (R)
Outcome variables (O) Timeliness 1 (T1), ... , Timeliness 5 (T5), Quality 1 (Q1), ... ,

Quality 5 (Q5)
Constraints

∨
i∈{1,...,6} Li

Li → ¬
∨

j∈{1,...,6}\i L j∀i ∈ {1, ..., 6}∨
i∈{1,...,5} Ti

Ti → ¬
∨

j∈{1,...,5}\i T j∀i ∈ {1, ..., 5}∨
i∈{1,...,5} Qi

Qi → ¬
∨

j∈{1,...,5}\i Q j∀i ∈ {1, ..., 5}
Model count 4800
Utilities given? Yes (self-reported happiness score)
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Table 5: A summary of the trolley problem data used in our third experiment.
Number of data points 360
Number of variables 23
Context variables (X) One Person On Track A (A1), ... , Family On Track A (AFa),

One Person On Track B (B1), ... , Family On Track B (BFa)
Decision variables (D) Inaction (I), Flip Switch (F), Push B (P), Sacrifice Oneself

(S )
Outcome variables (O) One Person Lives (L1), ... , Family Lives (LFa), You Live

(LY )
Constraints

∨
i∈{1,...,Fa} Ai∨
i∈{1,...,Fa} Bi
¬(Ai ∧ Bi)∀i ∈ {1, ..., Fa}
Ai → ¬

∨
j∈{1,...,Fa}\i A j∀i ∈ {1, ..., Fa}

Bi → ¬
∨

j∈{1,...,Fa}\i B j∀i ∈ {1, ..., Fa}∨
D∈{N,F,P,S } D

D→ ¬
∨

D′∈{N,F,P,S }\D D′

(Ai ∧ N)→ ¬Li∀i ∈ {1, ..., Fa}
(Bi ∧ N)→ Li∀i ∈ {1, ..., Fa}
Li → (Ai ∨ Bi)∀i ∈ {1, ..., Fa}
(S ∧ (Ai ∨ Bi))→ Li∀i ∈ {1, ..., Fa}
LY ↔ ¬S
(Li ∧ (P∨ F))→ ¬

∨
j∈{1,...,Fa}\i L j∀i ∈ {1, ..., Fa}

(¬Li ∧ (P∨ F))→
∨

j∈{1,...,Fa}\i L j∀i ∈ {1, ..., Fa}
Model count 180
Utilities given? No
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