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Abstract

The ability of reasoning beyond data fitting is substantial to deep learning systems
in order to make a leap forward towards artificial general intelligence. A lot of
efforts have been made to model neural-based reasoning as an iterative decision-
making process based on recurrent networks and reinforcement learning. Instead,
inspired by the consciousness prior proposed by Yoshua Bengio [[1], we explore
reasoning with the notion of attentive awareness from a cognitive perspective, and
formulate it in the form of attentive message passing on graphs, called neural
consciousness flow (NeuCFlow). Aiming to bridge the gap between deep learning
systems and reasoning, we propose an attentive computation framework with
a three-layer architecture, which consists of an unconsciousness flow layer, a
consciousness flow layer, and an attention flow layer. We implement the NeuCFlow
model with graph neural networks (GNNs) and conditional transition matrices.
Our attentive computation greatly reduces the complexity of vanilla GNN-based
methods, capable of running on large-scale graphs. We validate our model for
knowledge graph reasoning by solving a series of knowledge base completion
(KBC) tasks. The experimental results show NeuCFlow significantly outperforms
previous state-of-the-art KBC methods, including the embedding-based and the
path-based. The reproducible code can be found by the linkﬂ below.

1 Introduction

To discover the mystery of consciousness, several competing theories [2, 13} 4} S]] have been proposed
by neuroscientists. Despite their contradictory claims, they share a common notion that consciousness
is a cognitive state of experiencing one’s own existence, i.e. the state of awareness. Here, we do not
refer to those elusive and mysterious meanings attributed to the word "consciousness". Instead, we
focus on the basic idea, awareness or attentive awareness, to derive a neural network-based attentive
computation framework on graphs, attempting to mimic the phenomenon of consciousness to some
extent.

The first work to bring the idea of attentive awareness into deep learning models, as far as we know,
is Yoshua Bengio’s consciousness prior [[1]. He points out the process of disentangling higher-level
abstract factors from full underlying representation and forming a low-dimensional combination
of a few selected factors or concepts to constitute a conscious thought. Bengio emphasizes the
role of attention mechanism in expressing awareness, which helps focus on a few elements of state
representation at a given moment and combining them to make a statement, an action or policy. Two
recurrent neural networks (RNNs), the representation RNN and the consciousness RNN, are used to
summarize the current and recent past information and encode two types of state, the unconscious
state denoted by a full high-dimensional vector before applying attention, and the conscious state by
a derived low-dimensional vector after applying attention.

"https://github.com/netpaladinx/NeuCFlow
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Inspired by the consciousness prior, we develop an attentive message passing mechanism. We model
query-dependent states as motivation to drive iterative sparse access to an underlying large graph and
navigate information flow via a few nodes to reach a target. Instead of using RNNs, we use two GNNs
[6, [7] with node state representations. Nodes sense nearby topological structures by exchanging
messages with neighbors, and then use aggregated information to update their states. However, the
standard message passing runs globally and uniformly. Messages gathered by a node can come from
possibly everywhere and get further entangled by aggregation operations. Therefore, we need to draw
a query-dependent or context-aware local subgraph to guide message passing. Nodes within such a
subgraph are densely connected, forming a community to further exchange and share information,
reaching some resonance, and making subsequent decisions collectively to expand the subgraph
and navigate information flow. To support such attentive information flow, we design an attention
flow layer above two GNNs. One GNN uses the standard message passing over a full graph, called
unconsciousness flow layer, while the other GNN runs on a subgraph built by attention flow, called
consciousness flow layer. These three flow layers constitute our attentive computation framework.

We realize the connection between attentive awareness and reasoning. A reasoning process is
understood as a sequence of obvious or interpretable steps, either deductive, inductive, or abductive,
to derive a less obvious conclusion. From the aspect of awareness, reasoning requires computation
to be self-attentive or self-aware during processing in a way different from fitting by a black box.
Therefore, interpretability must be one of the properties of reasoning. Taking KBC tasks as an
example, many embedding-based models [8, 9} 10, |11} [12} [13]] can do a really good job in link
prediction, but lacking interpretation makes it hard to argue for their reasoning ability. People who
aim at knowledge graph reasoning mainly focus on the path-based models using RL [[14} 15} 16, [17/]
or logic-like methods [[18} [19] to explicitly model a reasoning process to provide interpretations
beyond predictions. Here, instead, we apply a flow-based attention mechanism, proposed in [20],
as an alternative to RL for learning composition structure. In a manner of flowing, attention can
propagate to cover a broader scope and increase the chance to hit a target. It maintains an end-to-end
differentiable style, contrary to the way RL agents learn to choose a discrete action.

Other crucial properties of reasoning include relational inductive biases and iterative processing.
Therefore, GNNSs 6, 7] are a better choice compared to RNNs for encoding structured knowledge
explicitly. Compared with the majority of previous GNN literature, focusing on the computation side,
making neural-based architectures more composable and complex, we put a cognitive insight into
it under the notion of attentive awareness. Specifically, we design an attention flow layer to chain
attention operations directly with transition matrices, parallel to the message-passing pipeline to get
less entangled with representation computation. This gives our model the ability to select edges step
by step during computation and attend to a query-dependent subgraph, making a sharper prediction
due to the disentanglement. These extracted subgraphs can reduce the computation cost greatly. In
practice, we find our model can be applied to very large graphs with millions of nodes, such as the
YAGO3-10 dataset, even running on a single laptop.

Our contributions are three-fold: (1) We propose an attentive computation framework on graphs,
combining GNNSs’ representation power with explicit reasoning pattern, motivated by the cognitive
notion of attentive awareness. (2) We exploit query-dependent subgraph structure, extracted by
an attention flow mechanism, to address two shortcomings of most GNN implementations: the
complexity and the non-context-aware aggregation schema. (3) We design a specific architecture for
KBC tasks and demonstrate our model’s strong reasoning capability compared to the state of the art,
showing that a compact query-dependent subgraph is better than a path as a reasoning pattern.

2 Related Work

KBC and knowledge graph reasoning. Early work for KBC, including TransE [8]] and its analogues
[211122] 23], DistMult [9], ConvE [10] and ComplEx [[L1], focuses on learning embeddings of entities
and relations. Some recent work of this line [[12} [13] achieves high accuracy, yet unable to explicitly
deal with compositional relationships that is crucial for reasoning. Another line aims to learn inference
paths [14} 24} 25| 26| 27, 28] for knowledge graph reasoning, such as DeepPath [15]], MINERVA
[L6]], and M-Walk [17], using RL to learn multi-hop relational paths over a graph towards a target
given a query. However, these approaches, based on policy gradients or Monte Carlo tree search,
often suffer from low sample efficiency and sparse rewards, requiring a large number of rollouts or



Figure 1: Illustration for the three-layer attentive computation framework. The bottom is a unified
unconsciousness flow layer, the middle contains small disentangled subgraphs to run attentive message
passing separately, constituting a consciousness flow layer, and the top is an attention flow layer for
extracting local subgraph structures.

running many simulations, and also the sophisticated reward function design. Other efforts include
learning soft logical rules [[18},[19] or compostional programs [29] to reason over knowledge graphs.

Relational reasoning by GNNs and attention mechanisms. Relational reasoning is regarded
as the key component of humans’ capacity for combinatorial generalization, taking the form of
entity- and relation-centric organization to reason about the composition structure of the world
(30, 31), 32,33 34]. A multitude of recent implementations [7] encode relational inductive biases
into neural networks to exploit graph-structured representation, including graph convolution networks
(GCNs) [351 136,37, 381 39} 40, [411, 42]] and graph neural networks [6} [43] 44}, 45 [46]], and overcome
the difficulty to achieve relational reasoning for traditional deep learning models. These approaches
have been widely applied to accomplishing real-world reasoning tasks (such as physical reasoning
[43] [50./51]), visual reasoning (44, [531/54]), textual reasoning [44][55]56]], knowledge
graph reasoning [411 57, 58], multiagent relationship reasoning [59,60], and chemical reasoning [46])),
solving algorithmic problems (such as program verification [61]], combinatorial optimization
[62, [64], state transitions [63], and bollean satisfiability [66])), or facilitating reinforcement
learning with the structured reasoning or planning ability [67, [50L [69] [70} [71]]. Variants of
GNN architectures have been developed with different focuses. Relation networks use a simple
but effective neural module to equip deep learning models with the relational reasoning ability, and its
recurrent versions [33],56] do multi-step relational inference for long periods; Interaction networks
[45] provide a general-purpose learnable physics engine, and two of its variants are visual interaction
networks [51]] learning directly from raw visual data, and vertex attention interaction networks [60]
with an attention mechanism; Message passing neural networks [46] unify various GCNs and GCNs
into a general message passing formalism by analogy to the one in graphical models.

Despite the strong representation power of GNNs, recent work points out its drawbacks that limit its
capability. The vanilla message passing or neighborhood aggregation schema cannot adapt to strongly
diverse local subgraph structure, causing performance degeneration when applying a deeper version
or running more iterations [72]], since a walk of more steps might drift away from local neighborhood
with information washed out via averaging. It is suggested that covariance rather than invariance
to permutations of nodes and edges is preferable [[73], since being fully invariant by summing or
averaging messages may worsen the representation power, lacking steerability. In this context, our
model expresses permutation invariance under a constrained compositional transformation according
to the group of possible permutations within each extracted query-dependent subgraph rather than the
underlying full graph. Another drawback is the heavy computation complexity. GNNs are notorious
for its poor scalability due to its quadratic complexity in the number of nodes when graphs are fully
connected. Even scaling linearly with the number of edges by exploiting structure sparsity can still
cause trouble on very large graphs, making selective or attentive computation on graphs so desirable.

Neighborhood attention operation can alleviate some limitation on GNNs’ representation power by
specifying different weights to different nodes or nodes’ features [[74) [60} 53, [75]. These approaches
often use multi-head self-attention to focus on specific interactions with neighbors when aggregating
messages, inspired by [76} [77 [78] originally for capturing long range dependencies. We notice that
most graph-based attention mechanisms attend over neighborhood in a single-hop fashion, and [60]
claims that the multi-hop architecture does not help in experiments, though they expect multiple hops
to offer the potential to model high-order interaction. However, a flow-based design of attention in
[20] shows a promising way to characterize long distance dependencies over graphs, breaking the
isolation of attention operations and stringing them in chronological order by transition matrices, like
the spread of a random walk, parallel to the message-passing pipeline.
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Figure 2: The neural consciousness flow architecture.

It is natural to extend relational reasoning to graph structure inference or graph generation, such as
reasoning about a latent interaction graph explicitly to acquire knowledge of observed dynamics [48]],
or learning generative models of graphs [79] 180l 81} |82]]. Soft plus hard attention mechanisms may be
a better alternative to probabilistic models that is hard to train with latent discrete variables or might
degenerate multi-step predictions due to the inaccuracy (biased gradients) of back-propagation.

3 NeuCFlow Model

3.1 Attentive computation framework

We extend Bengio’s consciousness prior to graph-structured representation. Conscious thoughts
are modeled by a few selected nodes and their edges, forming a context-aware subgraph, cohesive
with sharper semantics, disentangled from the full graph. The underlying full graph forms the initial
representation, entangled but rich, to help shape potential high-level subgraphs. We use attention flow
to navigate conscious thoughts, capturing a step-by-step reasoning pattern. The attentive computation
framework, as illustrated in Figurem, consists of: (1) an unconsciousness flow (U-Flow) layer, (2) a
consciousness flow (C-Flow) layer, and (3) an attention flow (A-Flow) layer, with four guidelines to
design a specific implementation as follows:

e U-Flow corresponds to a low-level computation graph for full state representation learning.
e C-Flow contains high-level disentangled subgraphs for context-aware representation learning.

e A-Flow is conditioned by both U-Flow and C-Flow, and also motivate C-Flow but not U-Flow.
e Information can be accessed by C-Flow from U-Flow with the help of A-Flow.

3.2 Model architecture design for knowledge graph reasoning

We choose KBC tasks to do KG reasoning. We let (V, £) denote a KG where V is a set of nodes (or
entities) and £ is a set of edges (or relations). A KG is viewed as a directed graph with each edge
represented by a triple (head, rel, tail), where head is the head entity, tail is the tail entity, and rel
is their relation type. The aim of a KBC task is to predict potential unknown links, i.e., which entity
is likely to be the tail given a query (head, rel,?) with the head and the relation type specified.

The model architecture has three core components as shown in Figure 2] We here use the term
"component" instead of "layer" to differentiate our flow layers from the referring normally used in
neural networks, as each flow layer is more like a block containing many neural network layers.

U-Flow component. We implement this component over the full graph using the standard message
passing mechanism [46]). If the graph has an extremely large number of edges, we sample a subset



of edges, £7,,,) C &, randomly each step when running message passing. For each batch of input
queries, we let the representation computed by the U-Flow component be shared across these different
queries, which means U-Flow is query-independent, with its state representation tensors containing no
batch dimension, so that its complexity does not scale with the batch size and the saved computation
resources can be allocated to sampling more edges. In U-Flow, each node v has a learnable embeddrng
e, and a dynamical state hT for step 7, called unconscious node states, where the initial h =e,
for all v € V. Each edge type 7 also has a learnable embedding e,., and edge (v’, r, v) can produce a

message, denoted by m7, {0/ ,r0)» ALStEp 7. The U-Flow component includes:

e Message function: m7, = tunc(h7,, €., h7), where (v/,7,v) € &

(v’ rv)y T smpl*

e Message aggregation: i) = \/T Do M s Where (U, 0) € EL
e Node state update function: hTJrl hT + dunc (A7, fl{,, e,), where v € V.

We compute messages only for the sampled edges, (v', r,v) € ampl» €ach step. Functions ¢un. and
dunc are implemented by a two-layer MLP (using leakyReLu for the first layer and tanh for the
second layer) with input arguments concatenated respectively. Messages are aggregated by dividing
the sum by the square root of the number of sampled neighbors that send messages, preserving the
scale of variance. We use a residual adding to update each node state instead of a GRU or a LSTM.

After running U-Flow for T steps, we return a pooling result or simply the last, h, == fl;r, to feed
into downstream components.

C-Flow component. C-Flow is query-dependent, which means that conscious node states, denoted

y h!, have a batch dimension representing different input queries, making the complexity scale
with the batch size. However, as C-Flow uses attentive message passing, running on small local
subgraphs each conditioned by a query, we leverage the sparsity to record h! only for the visited
nodes v € VY. ... For example, when ¢ = 0, for query (head, rel, ?), we start from node head, with

isit
vgim {Uhe:d} being a singleton, and thus record h ., only. When computing messages, denoted
by m’! (0! o) in C-Flow, we use a sampling-attending procedure, explained in Section to further

control the number of computed edges. The C-Flow component has:

e Message function: mzv’,r,w = Yeon(hl,, ¢, hl), where (v/,r,v) € ggopks(a“*'lﬂtopk“(at)’ and
Cp = [em Qhead> QTel]~
e Message aggregation: u! =

1 t / t
/Nt Zv’,’r’ m(v’,r,v)’ where <U ) 7 U> € 8topk5 (at*1) | topka(at)"

e Node state attending function: 77/t = a/*'A - h,,, where a/;"! at“[ ] and v € ViFL.

visit*

e Node state update function: h{™ = hf + 6.0n (1, e, ctt1), where ¢t = [, Qneads Qrei)-

C-Flow and U-Flow share the embeddings e,.. A query is represented by its head and relation
embeddings, Qpeqd = €head aNd Qre; = €¢, participating in computing messages and updating
node states. We here select a subset of edges, Stopkb (at+1) | topk> (at)? rather than sampling, according
to edges between the attended nodes at step ¢ and the seen nodes at step ¢ + 1, defined in Section[3.3]
as shown in Figure We introduce the node state attending function to pass an unconscious state h,
to C-Flow adjusted by a scalar attention o/ and a learnable matrix A. We initialize h® := h,, for

v € VU, treating the rest as zero states.

A-Flow component. Attention flow is represented by a series of probability distributions changing
across steps, denoted as at,¢ = 1,2...,T. The initial distribution a® is a one-hot vector with
ad [Vheaa] = 1. To spread attention, we need to compute transition matrices T* each step. Given that
A-Flow is conditioned by both U-Flow and C-Flow, we model the transition from v’ to v by two

types of interaction: conscious-to-conscious, h!, ~ h!, and conscious-to-unconscious, h!, ~ h,.
The former favors previously visited nodes, Wh11e the latter is useful to attend to unseen nodes.

T* (0] = SOftmaXveNs, ( Zr O‘cc(hfﬂa Cr, hf)) + ZT Qcu (thH Cr, ﬁv))

where a.. = MLP(h!,,c,)T®..MLP(h!, c,) and ac, = MLP(hWc,)T(BcuMLP(ﬁmcr), and
O, and O, are two learnable matrices. Each MLP uses one single layer with the leakyReLu
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Figure 3: The iterative sampling-attending procedure for attentive complexity reduction, balancing
the coverage as well as the complexity.

activation. To reduce the complexity for computing T, we select attended nodes, v’ € topk®(a?),
which is the set of nodes with the k-largest attention, and then sample v from v’ neighbors as next
nodes. Then, we compute a sparse T* according to edges (v',7,v) € Esmpl | topka(at)- Due to the
fact that the attended nodes may not carry all attention, a small amount of attention can be lost
during transition, causing the total amount to decrease. Therefore, we use a renormalized version,
alt! = Tta'/||T*a’||. We use the final attention on the tail as the probability for prediction to
compute the training objective, as shown in Figure 2]

3.3 Complexity reduction by iterative sampling and attending

Previously, we use edge sampling, in a globally and uniformly random manner, to address the
complexity issue in U-Flow, where we are not concerned about the batch size. Here, we need to
confront the complexity that scales with the batch size in C-Flow. Suppose that we run a normal
message passing for T steps on a KG with |V| nodes and |€| edges for a batch of N queries. Then,
the complexity is O(NTD(|V| + |€])) where D represents the number of representation dimensions.
The complexity can be reduced to O(NTD(|V| + |Esmpl|)) by using edges sampling. 7T is a small
positive integer, often less than 10. D is normally between 50 and 200, and being too small for
D would lead to underfitting. In U-Flow, we have N = 1, while in C-Flow, let us say N = 100.
Then, to maintain the same complexity as U-Flow, we have to reduce the sampling rate by a factor
of 100 on each query. However, the U-Flow’s edge sampling procedure is for the full graph, and it
is inappropriate to apply to C-Flow on each query due to the reduced sample rate. Also, when |V
becomes as large as |Esmpi|, We also need to consider decreasing | V).

Good news is that C-Flow deals with a local subgraph for each query so that we only record a few
selected nodes, called visited nodes, denoted by VZ,_... We can see that | V!, | is much less than
|V|. The initial V%,;,, when ¢ = 0, contains only one node vp,cqq, and then V!, is enlarged each
step by adding new nodes during spreading. When propagating messages, we only care about the
one-step neighborhood each step. However, the spreading goes so rapidly that after only a few steps it
covers almost all nodes, causing the number of computed edges to increase dramatically. The key to
address the problem is that we need to constrain the scope of nodes we jump from each step, i.e., the
core nodes that determine where we can go based on where we depart from. We call them attended
nodes, which are in charge of the attending-from horizon, selected by topk®(a!) based on the current
attention a‘. Given the set of attended nodes, we still need edge sampling over their neighborhoods
in case of a hub node of extremely high degree. Here, we face a tricky problem that is to make a
trade-off between the coverage and the complexity when sampling over the neighborhoods. Also, we
need to well maintain these coherent context-aware node states and avoid possible noises or drifting
away caused by sampling neighbors randomly. Therefore, we introduce an attending-to horizon inside
the sampling horizon. We compute A-Flow over the sampling horizon with a smaller dimension
to compute the attention, exchanged for sampling more neighbors to increase the coverage. Based



Table 1: Statistics of the six KG datasets. A KG is built on all training triples including their inverse
triples. Note that we do not count the inverse triples in FB15K, FB15K-237, WN18, WN18RR, and
YAGO3-10 as shown below to be consistent with the statistics reported in other papers, though we
include them in the training, validation and test set. PME (tr) means the proportion of multi-edge
triples in train; PME (te) means the proportion of multi-edge triples in test; AvgD (te) means the
average length of shortest paths connecting each head-tail pair in test.

Dataset #Entities #Rels #Train  #Valid #Test | PME (tr) PME (te) AvgD (te)

FB15K 14,951 1,345 483,142 50,000 59,071 | 81.2% 80.9% 1.22
FB15K-237| 14,541 237 272,115 17,535 20,466 | 38.0% 0% 2.25
WNI18 40,943 18 141,442 5,000 5,000 | 93.1% 94.0% 1.18

WNISRR 40,943 11 86,835 3,034 3,134 | 34.5% 35.0% 2.87
NELL995 74,536 200 149,678 543 2,818 | 100% 41.0% 2.06
YAGO3-10 | 123,188 37 1,079,040 5,000 5,000 | 56.4% 56.0% 1.75

Table 2: Comparison results on the FB15K-237 and WN18RR datasets. Results of [#] are taken
from [83]], results of [&] from [[L0], results of [] from [17]], results of [{] from [12]], and results of
[A] from [16]. Some collected results only have a metric score while some including ours take the
form of "mean (standard deviation)".

FB15K-237 WNISRR
Metric (%) H@l H@3 H@I0 MRR | H@l H@3 H@I0 MRR
TransE [#] - - 46.5 29.4 - - 50.1 22.6
DistMult [&] | 15.5 26.3 419 241 39 44 49 43
DistMult [¥] | 20.6 (4) 31.8(.2) - 29.0 (.2) | 38.4 (4) 42.4(.3) - 41.3(.3)
ComplEx [&] |15.8 275 28 247 41 46 51 44
ComplEx [¥] [20.8(.2) 32.6(.5) - 29.6 (.2) | 38.5 (.3) 43.9(.3) . 42.2(2)
ConvE [&] 237 35.6 50.1 325 40 a4 52 13
ConvE [V] 23.3(.4) 33.8(.3) - 30.8 (.2) | 39.6 (.3) 44.7(.2) . 43.3(.2)
RotatE [O] 241 375 533 338 038 492 571 476
NeuralLP [O] | 18.2(.6) 27.2(3) - 249(2)[372(1) 434(1D) - 435(.1)
MINERVA [V] | 14.1 (2) 232 (4 N 20.5(3) | 35.1 (1) 445 (4) - 409 (.1)
MINERVA [A] - . 45.6 . 41.3 45.6 51.3 .
M-Walk [Q] | 16,5 (3) 243 (.2) N 232(2) 414 (1) 445(2) - 437 (1)

NeuCFlow [ 28.6 (1) 40.3(.1) 53.0(3) 369 (1)|44.4(4) 49.7(8) 558 (5) 48.2(5)

on the newly computed attention a’™!, we select a smaller subset of nodes, topk®(a‘*!), to receive
messages in C-Flow, called seen nodes, in charge of the attending-to horizon. The next attending-
from horizon is chosen by topk™(a’™!) C topk®(a‘*!), a sub-horizon of the current attending-to
horizon. All seen and attended nodes are stored as visited nodes along steps. We illustrate this
sampling-attending procedure in Figure 3]

To compute our reduced complexity, we let N, be the maximum number of sampled edges per
attended node per step, /Ny the maximum number of seen nodes per step, and N, the maximum
number of attended nodes per step. We also denote the dimension number used in A-Flow as D,.
For one batch, the complexity of C-Flow is O(NT D(N, + N; + N, N;)) for the worst case, where
attended and seen nodes are fully connected, and O(NT'D - ¢(N, + N;)) in most cases, where ¢ is a
small constant. The complexity of A-Flow is O(NT' D, N, N,) where D, is much smaller than D.

4 Experiments

4.1 Datasets and experimental settings

Datasets. We evaluate our model using six large KG datasetsﬁ FBI15K, FB15K-237, WNI18,
WNI18RR, NELL995, and YAGO3-10. FB15K-237 [|84]] is sampled from FB15K [8] with redundant
relations removed, and WN18RR [10] is a subset of WN18 [8] removing triples that cause test
leakage. Thus, they are both considered more challenging. NELL995 [[15] has separate datasets

*https://github.com/netpaladinx/NeuCFlow/tree/master/data



Table 3: Comparison results on the FB15K and WN18 datasets. Results of [#] are taken from [86],
results of [ée] are from [[10], results of [{] are from [12]], and results of [] are from [19]]. Our results
take the form of "mean (standard deviation)".

FB15K WN18
Metric (%) H@l H@3 H@10 MRR H@l H@3 H@l0 MRR

TransE [#] 29.7 57.8 74.9 46.3 11.3 88.8 94.3 49.5

HolE [#] 40.2 61.3 73.9 52.4 93.0 94.5 94.9 93.8

DistMult [é] 54.6 73.3 82.4 65.4 72.8 91.4 93.6 82.2

ComplEx [&] | 59.9 75.9 84.0 69.2 93.6 93.6 94.7 94.1

ConvE [&] 558 723 831 657 | 935 046 956 943
RotaiE [$] 746 830 884 797 | 944 952 959 949
NeuralLP [O]]| - 83.7 76 | - - 94.5 o4

NeuCFlow |72.6 (4) 784 (4) 83.4(5) 764(4)|91.6(8) 93.6(4 949 (4 92.8(6)

Table 4: Comparison results on the YAGO3-10 dataset. Results of [#] are taken from [[10], and
results of [&] are from [[13]].

YAGO3-10
Metric (%) H@l H@3 H@10 MRR
DistMult [é] 24 38 54 34
ComplEx [é] 26 40 55 36
ConvE [#] 35 49 62 44
ComplEx-N3 [é&)] - - 71 58
NeuCFlow [ 484 595 679 553

for 12 query relations each corresponding to a single-query-relation KBC task. YAGO3-10 [85]
contains the largest KG with millions of edges. Their statistics are shown in Table[T} We find some
statistical differences between train and test. In a KG with all training triples as its edges, a triple
(head, rel, tail) is considered as a multi-edge triple if the KG contains other triples that also connect
head and ta:l ignoring the direction. We notice that FB15K-237 is a special case compared with the
others, as there are no edges in its KG directly linking any pair of head and tail in test. Therefore,
when using training triples as queries to train our model, given a batch, for FB15K-237, we cut off
from the KG all triples connecting the head-tail pairs in the given batch, ignoring relation types and
edge directions, forcing the model to learn a composite reasoning pattern rather than a single-hop
pattern, and for the rest datasets, we only remove the triples of this batch and their inverse from the
KG before training on this batch.

Experimental settings. We use the same data split protocol as in many papers [10, [15 [16]. We
create a KG, a directed graph, consisting of all train triples and their inverse added for each dataset
except NELL995, since it already includes reciprocal relations. Besides, every node in KGs has a
self-loop edge to itself. We also add inverse relations into the validation and test set to evaluate the
two directions. For evaluation metrics, we use HITS@1,3,10 and the mean reciprocal rank (MRR) in
the filtered setting for FB15K-237, WN18RR, FB15K, WN18, and YAGO3-10, and use the mean
average precision (MAP) for NELL995’s single-query-relation KBC tasks. For NELL995, we follow
the same evaluation procedure as in [[15 16} [17]], ranking the answer entities against the negative
examples given in their experiments. We run our experiments using a 12G-memory GPU, TITAN X
(Pascal), with Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz. Our code is written in Python based
on TensorFlow 2.0 and NumPy 1.16.

4.2 Baselines and comparison results

Baselines. We compare our model against embedding-based approaches, including TransE [&]],
TransR [22]], DistMult [9], ConvE [10], ComplE [11], HolE [86], RotatE [12], and ComplEx-N3
[[L3]], and path-based approaches that use RL methods, including DeepPath [[15], MINERVA [16]],
and M-Walk [[17], and also that uses learned neural logic, NeuralLP [19]. For all the baselines, we
quote the results from the corresponding papers instead of rerunning them. For our method, we run



Table 5: Comparison results of MAP scores (%) on NELL995’s single-query-relation KBC tasks. We
take our baselines’ results from [17]. All results take the form of "mean (standard deviation)" except
for TransE and TransR.

Tasks NeuCFlow | M-Walk MINERVA DeepPath TransE TransR
AthletePlaysForTeam 83.9(0.5) [84.7(1.3) 82.7(0.8) 72.1(1.2) 62.7 67.3
AthletePlaysInLeague 97.5(0.1) |{97.8(0.2) 95.2(0.8) 92.7(5.3) 773 91.2
AthleteHomeStadium 93.6 (0.1) | 91.9(0.1) 92.8(0.1) 84.6(0.8) 71.8 72.2
AthletePlaysSport 98.6 (0.0) | 98.3(0.1) 98.6(0.1) 91.7(4.1) 87.6 96.3
TeamPlayssport 90.4 (0.4) | 88.4(1.8) 87.5(0.5) 69.6(6.7) 76.1 81.4
OrgHeadQuarteredInCity 94.7 (0.3) | 95.0 (0.7) 94.5(0.3) 79.0(0.0) 62.0 65.7
WorksFor 86.8 (0.0) | 84.2(0.6) 82.7(0.5) 69.9(0.3) 67.7 69.2
PersonBornInLocation 84.1(0.5) [81.2(0.0) 782(0.0) 75505 712 81.2
PersonLeadsOrg 88.4(0.1) | 88.8(0.5) 83.0(2.6) 79.0(1.0) 75.1 77.2
OrgHiredPerson 84.7 (0.8) |88.8(0.6) 87.0(0.3) 73.8(1.9) 719 73.7
AgentBelongsToOrg 89.3 (1.2) - - - - -
TeamPlaysInLeague 97.2 (0.3) - - - - -

the experiments three times in each hyperparameter setting on each dataset to report the means and
standard deviations of the results. We put the details of our hyperparameter settings in the appendix.

Comparison results and analysis. We first report the comparison on FB15K-23 and WN18RR in
Table 2] NeuCFlow has a surprisingly good result, significantly outperforming all the compared
methods in HITS@1,3 and MRR on both the two datasets. Compared to the best baseline, RotatE,
published very recently, we only lose a few points in HITS@ 10 but gain a lot in HITS@1,3 and MRR.
Based on the observation that NeuCFlow gains a larger amount of advantage when k in HITS @k gets
smaller, we speculate that the reasoning ability acquired by NeuCFlow is to make a sharper prediction
by exploiting graph-structured composition locally and conditionally, in contrast to embedding-based
methods, which totally rely on vectorized representation. When a target becomes too vague to
predict, reasoning may lose its great advantage, though still very competitive. However, path-based
baselines, with a certain ability to do KG reasoning, perform worse than we expect. We argue that it
is inappropriate to think of reasoning, a sequential decision process, as a sequence of nodes, i.e. a
path, in KGs. The average length of the shortest paths between heads and tails in the test set in a KG,
as shown in Table (1] suggests an extremely short path, making the motivation for using a path pattern
almost pointless. The iterative reasoning pattern should be characterized in the form of dynamically
varying local graph-structured patterns, holding a bunch of nodes resonating with each other to
produce a decision collectively. Then, we run our model on larger KGs, including FB15K, WN18,
and YAGO3-10, and summarize the comparison in Table E]E], where NeuCFlow beats most well-
known baselines and achieves a very competitive position against the best state-of-the-art methods.
Moreover, we summarize the comparison on NELL995’s tasks in Table[5] NeuCFlow performs the
best on five tasks, also being very competitive against M-Walk, the best path-based method as far as
we know, on the rest. We find no reporting on the last two tasks from the corresponding papers.

4.3 Experimental analysis

Convergence analysis. During training we find that NeuCFlow converges surprisingly fast. We may
use half of training examples to get the model well trained and generalize it to the test, sometimes
producing an even better metric score than trained for a full epoch, as shown in Figure[d{ A). Compared
with the less expensive computation using embedding-based models, although our model takes a
large number of edges to compute for each input query, consuming more time on one batch, it does
not need a second epoch or even taking all training triples as queries in one epoch, thus saving a lot
of training time. The reason may be that all queries are directly from the KG’s edge set and some
of them have probably been exploited to construct subgraphs for many times during the training of
other queries, so that we might not have to train the model on each query explicitly as long as we
have other ways to exploit them.

Component analysis. If we do not run U-Flow, then the unconscious state h, is just the initial
embedding of node v, and we can still run C-Flow as usual. We want to know whether the U-Flow
component is actually useful. Considering that long-distance message passing might bring in less
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Figure 4: Experimental analysis on WN18RR: (A) During training we pick six model snapshots
at time points of 0.3, 0.5, 0.7, 1, 2, and 3 epochs and evaluate them on test; (B) The w/o U-Flow
uses zero step to run U-Flow, while the with U-Flow uses two steps; (C)-(F) are for the sampling,
attending and searching horizon analysis based on the standard hyperparameter settings listed in the
appendix. The experimental analysis charts on FB15K-237 can be found in the appendix.

informative features, we compare running U-Flow for two steps against totally shutting it down. The
result in Figure [d(B) shows that U-Flow brings a small gain in each metric on WN18RR.

Horizon analysis. The sampling, attending and searching horizons determine how large area the
flow can spread over. They impact the computation complexity as well as the performance of the
model with different degrees depending on the properties of a dataset. Intuitively, enlarging the
probe scope by sampling more, attending more, or searching longer, may increase the chance to hit
a target. However, the experimental results in Figure @(C)(D) show that it is not always the case.
In Figure [(E), we can see that increasing the maximum number of the attending-from nodes, i.e.
attended nodes, per step is more important, but our GPU does not allow for a larger number to
accommodate more intermediate data produced during computation, otherwise causing the error of
ResourceExhaustedError. Figure f[F) shows the step number of C-Flow cannot get too small as two.

Attention flow analysis. If attention flow can really capture the way we reason about the world, its
process should be conducted in a diverging-converging thinking pattern. Intuitively, first, for the
diverging thinking, we search and collect ideas as much as we can; then, for the converging thinking,
we try to concentrate our thoughts on one point. To check whether the attention flow has such a
pattern, we measure the average entropy of attention distributions varying along steps and also the
proportion of attention concentrated at the top-1,3,5 attended nodes. As we expect, attention indeed
is more focused at the final step as well as at the beginning.

Time cost analysis. The time cost is affected not only by the scale of a dataset but also by the
horizon setting. For each dataset, we list the training time for one epoch corresponding to the
standard hyperparameter settings in the appendix. Note that there is always a trade-off between the
complexity and the performance. We thus study whether we can reduce the time cost a lot at the price
of sacrificing a little performance. We plot the one-epoch training time in Figure[6{A)-(D), using
the same settings as we do in the horizon analysis. We can see that Max-attended-nodes-per-step
and #Steps-of-C-Flow affect the training time significantly while Max-sampled-edges-per-node and
Max-seen-nodes-per-step affect very slightly. Therefore, we can use smaller Max-sampled-edges-per-
node and Max-seen-nodes-per-step in order to gain a larger batch size, making the computation more
efficiency as shown in Figure [[E).
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Figure 5: Analysis of attention flow on NELL995 tasks: (A) records how the average entropy of
attention distributions varies along steps for each single-query-relation KBC task. (B)(C)(D) measure
the changing of the proportion of attention concentrated at the top-1,3,5 attended nodes per step for
each task.
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Figure 6: Analysis of time cost on WN18RR: (A)-(D) measure the training time for one epoch on
different horizon settings corresponding to Figure f(C)-(F); (E) measures the training time for one
epoch for different batch sizes using the same horizon setting, which is Max-sampled-edges-per-
node=20, Max-seen-nodes-per-step=20, Max-attended-nodes-per-step=20, and #Steps-of-C-Flow=8.
The time cost analysis charts on FB15K-237 can be found in the appendix.

4.4 Visualization

To further demonstrate the reasoning ability acquired by our model, we show some visualization
results of the extracted subgraphs on NELL995’s test data for 12 separate tasks. We avoid using
the training data in order to show the generalization of our model’s learned reasoning ability on
knowledge graphs. Here, we show the visualization result for the AthletePlaysForTeam task. The rest
can be found in the appendix.

For the AthletePlaysForTeam task

Query: (concept_personnorthamerica_michael_turner, concept:athleteplaysforteam , concept_sportsteam_falcons)
Selected key edges:

concept_personnorthamerica_michael_turner, concept:agentbelongstoorganization, concept_sportsieague_nfl
concept_personnorthamerica_michael_turner, concept:athletehomestadium, concept_stadiumoreventvenue_georgia_dome
concept_sportsleague_nfl, concept:agentcompeteswithagent, concept_sportsleague_nfl
concept_sportsleague_nfl, concept:agentcompeteswithagent_inv, concept_sportsleague_nfl
concept_sportsleague_nfl, concept:teamplaysinleague_inv, concept_sportsteam_sd_chargers
concept_sportsleague_nfl, concept:leaguestadiums, concept_stadiumoreventvenue_georgia_dome
concept_sportsleague_nfl, concept:teamplaysinleague_inv, concept_sportsteam_falcons
concept_sportsleague_nfl, concept:agentbelongstoorganization_inv, concept_personnorthamerica_michael_turner
concept_stadiumoreventvenue_georgia_dome, concept:leaguestadiums_inv, concept_sportsleague_nfl
concept_stadiumoreventvenue_georgia_dome, concept:teamhomestadium_inv, concept_sportsteam_falcons

concept_stadiumoreventvenue_georgia_dome, concept:athletehomestadium_inv, concept_athlete_joey_harrington
concept_stadiumoreventvenue_georgia_dome, concept:athletehomestadium_inv, concept_athlete_roddy_white
concept_stadiumoreventvenue_georgia_dome, concept:athletehomestadium_inv, concept_coach_deangelo_hall
concept_stadiumoreventvenue_georgia_dome, concept:athletehomestadium_inv, concept_personnorthamerica_michael_turner

concept_sportsleague_nfl, concept:subpartoforganization_inv, concept_sportsteam_oakland_raiders
concept_sportsteam_sd_chargers, concept:teamplaysinleague, concept_sportsleague_nfl
concept_sportsteam_sd_chargers, concept:teamplaysagainstteam, concept_sportsteam_falcons
concept_sportsteam_sd_chargers, concept:teamplaysagainstteam_inv, concept_sportsteam_falcons
concept_sportsteam_sd_chargers, concept:teamplaysagainstteam, concept_sportsteam_oakland_raiders
concept_sportsteam_sd_chargers, concept:teamplaysagainstteam_inv, concept_sportsteam_oakland_raiders
concept_sportsteam_falcons, concept:teamplaysinleague, concept_sportsleague_nfl
concept_sportsteam_falcons, concept:teamplaysagainstteam, concept_sportsteam_sd_chargers
concept_sportsteam_falcons, concept:teamplaysagainstteam_inv, concept_sportsteam_sd_chargers
concept_sportsteam_falcons, concept:teamhomestadium, concept_stadiumoreventvenue_georgia_dome
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Figure 7: AthletePlaysForTeam. The head is concept_personnorthamerica_michael_turner, the
query relation is concept:athleteplaysforteam, and the desired tail is concept_sportsteam_falcons.
The left is a full subgraph derived with max_attended_nodes_per_step = 20, and the right is a
further extracted subgraph from the left based on attention. The big yellow node represents the head,
and the big red node represents the tail. Colors indicate how important a node is attended to in a local
subgraph. Grey means less important, yellow means it is more attended during the early steps, and
red means it is more attended when getting close to the final step.
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In the above case, the query is (concept_personnorthamerica_michael_turner, concept:athleteplays-
forteam, ?) and the desired answer is concept_sportsteam_falcons. From Figure[7, we can see our
model learns that (concept_personnorthamerica_michael_turner, concept:athletehomestadium, con-
cept_stadiumoreventvenue_georgia_dome) and (concept_stadiumoreventvenue_georgia_dome, con-
cept:teamhomestadium_inv, concept_sportsteam_falcons) are two important facts to support the an-
swer of concept_sportsteam_falcons. Besides, other facts, such as (concept_athlete_joey_harrington,
concept:athletehomestadium, concept_stadiumoreventvenue_georgia_dome) and (concept_athlete-
_joey_harrington, concept:athleteplaysforteam, concept_sportsteam_falcons), provide a vivid exam-
ple that a person or an athlete with concept_stadiumoreventvenue_georgia_dome as his or her home
stadium might play for the team concept_sportsteam_falcons. We have such examples more than
one, like concept_athlete_roddy_white’s and concept_athlete_quarterback_matt_ryan’s. The entity

12



concept_sportsleague_nfl cannot help us differentiate the true answer from other NFL teams, but it
can at least exclude those non-NFL teams. In a word, our subgraph-structured representation can
well capture the relational and compositional reasoning pattern.

5 Conclusion

We introduce an attentive message passing mechanism on graphs under the notion of attentive aware-
ness, inspired by the phenomenon of consciousness, to model the iterative compositional reasoning
pattern by forming a compact query-dependent subgraph. We propose an attentive computation
framework with three flow-based layer to combine GNNs’ representation power with explicit rea-
soning process, and further reduce the complexity when applying GNNSs to large-scale graphs. It is
worth mentioning that our framework is not limited to knowledge graph reasoning, but has a wider
applicability to large-scale graph-based computation with a few input-dependent nodes and edges
involved each time.

References
[1] Yoshua Bengio. The consciousness prior. CoRR, abs/1709.08568, 2017.

[2] Stanislas Dehaene, Michel Kerszberg, and Jean Pierre Changeux. A neuronal model of a global
workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the
United States of America, 95 24:14529-34, 1998.

[3] Giulio Tononi, Mélanie Boly, Marcello Massimini, and Christof Koch. Integrated information
theory: from consciousness to its physical substrate. Nature Reviews Neuroscience, 17:450-461,
2016.

[4] David Rosenthal and Josh Weisberg. Higher-order theories of consciousness. Scholarpedia,
3:4407, 2008.

[5] Robert Van Gulick. Higher-order global states (hogs): an alternative higher-order model.
Higher-order theories of consciousness, pages 67-93, 2004.

[6] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. /EEE Transactions on Neural Networks, 20:61-80, 2009.

[7] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Flo-
res Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Giilgehre, Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl,
Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu. Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261,
2018.

[8] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

[9] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. CoRR, abs/1412.6575, 2015.

[10] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI 2018.

[11] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In ICML, 2016.

[12] Zhiging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. CoRR, abs/1902.10197, 2018.

[13] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In ICML, 2018.

13



[14] Ni Lao, Tom Michael Mitchell, and William W. Cohen. Random walk inference and learning in
a large scale knowledge base. In EMNLP, 2011.

[15] Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. In EMNLP, 2017.

[16] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay
Krishnamurthy, Alexander J. Smola, and Andrew McCallum. Go for a walk and arrive at
the answer: Reasoning over paths in knowledge bases using reinforcement learning. CoRR,
abs/1711.05851, 2018.

[17] Yelong Shen, Jianshu Chen, Pu Huang, Yuqing Guo, and Jianfeng Gao. M-walk: Learning to
walk over graphs using monte carlo tree search. In NeurIPS, 2018.

[18] William W. Cohen. Tensorlog: A differentiable deductive database. CoRR, abs/1605.06523,
2016.

[19] Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In NIPS, 2017.

[20] Xiaoran Xu, Songpeng Zu, Chengliang Gao, Yuan Zhang, and Wei Feng. Modeling attention
flow on graphs. CoRR, abs/1811.00497, 2018.

[21] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI 2014.

[22] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, 2015.

[23] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jian Zhao. Knowledge graph embedding
via dynamic mapping matrix. In ACL, 2015.

[24] Matt Gardner, Partha Pratim Talukdar, Jayant Krishnamurthy, and Tom Michael Mitchell.
Incorporating vector space similarity in random walk inference over knowledge bases. In
EMNLP, 2014.

[25] Kelvin Guu, John Miller, and Percy S. Liang. Traversing knowledge graphs in vector space. In
EMNLP, 2015.

[26] Yankai Lin, Zhiyuan Liu, and Maosong Sun. Modeling relation paths for representation learning
of knowledge bases. In EMNLP, 2015.

[27] Kristina Toutanova, Victoria Lin, Wen tau Yih, Hoifung Poon, and Chris Quirk. Compositional
learning of embeddings for relation paths in knowledge base and text. In ACL, 2016.

[28] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural networks. In EACL, 2017.

[29] Chen Liang, Jonathan Berant, Quoc V. Le, Kenneth D. Forbus, and Ni Lao. Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision. In ACL, 2016.

[30] Kenneth H. Craik. The nature of explanation. 1952.
[31] John R. Anderson. Acquisition of cognitive skill. 1982.
[32] Dedre Gentner and Arthur B. Markman. Structure mapping in analogy and similarity. 1997.

[33] John E. Hummel and Keith J. Holyoak. A symbolic-connectionist theory of relational inference
and generalization. Psychological review, 110 2:220-64, 2003.

[34] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. The Behavioral and brain sciences, 40:¢253, 2017.

[35] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2014.

14



[36] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. CoRR, abs/1506.05163, 2015.

[37] David K. Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gémez-Bombarelli,
Timothy Hirzel, Aldn Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NIPS, 2015.

[38] Steven M. Kearnes, Kevin McCloskey, Marc Berndl, Vijay S. Pande, and Patrick Riley. Molec-
ular graph convolutions: moving beyond fingerprints. Journal of computer-aided molecular
design, 30 8:595-608, 2016.

[39] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NIPS, 2016.

[40] Mathias Niepert, Mohammed Hassan Ahmed, and Konstantin Kutzkov. Learning convolutional
neural networks for graphs. In ICML, 2016.

[41] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907, 2017.

[42] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine,
34:18-42, 2017.

[43] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence
neural networks. CoRR, abs/1511.05493, 2016.

[44] Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter W. Battaglia, and Timothy P. Lillicrap. A simple neural network module for relational
reasoning. In NIPS, 2017.

[45] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In
NIPS, 2016.

[46] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In /CML, 2017.

[47] Michael Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A compositional
object-based approach to learning physical dynamics. CoRR, abs/1612.00341, 2017.

[48] Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard S. Zemel. Neural
relational inference for interacting systems. In /ICML, 2018.

[49] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin A.
Riedmiller, Raia Hadsell, and Peter W. Battaglia. Graph networks as learnable physics engines
for inference and control. In /ICML, 2018.

[50] Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B.
Tenenbaum, and Peter W. Battaglia. Relational inductive bias for physical construction in
humans and machines. CoRR, abs/1806.01203, 2018.

[51] Nicholas Watters, Daniel Zoran, Théophane Weber, Peter W. Battaglia, Razvan Pascanu, and
Andrea Tacchetti. Visual interaction networks: Learning a physics simulator from video. In
NIPS, 2017.

[52] David Raposo, Adam Santoro, David G. T. Barrett, Razvan Pascanu, Timothy P. Lillicrap, and
Peter W. Battaglia. Discovering objects and their relations from entangled scene representations.
CoRR, abs/1702.05068, 2017.

[53] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7794-7803,
2018.

15



[54] Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta. Iterative visual reasoning beyond
convolutions. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7239-7248, 2018.

[55] Adam Santoro, Ryan Faulkner, David Raposo, Jack W. Rae, Mike Chrzanowski, Théophane
Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy P. Lillicrap. Relational
recurrent neural networks. In NeurIPS, 2018.

[56] Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In NeurIPS,
2018.

[57] Daniel Ofioro-Rubio, Mathias Niepert, Alberto Garcia-Durdn, Roberto Gonzalez, and
Roberto Javier Lopez-Sastre. Representation learning for visual-relational knowledge graphs.
CoRR, abs/1709.02314, 2017.

[58] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer
for out-of-knowledge-base entities: A graph neural network approach. 2017.

[59] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication
with backpropagation. In NIPS, 2016.

[60] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In NIPS, 2017.

[61] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs. CoRR, abs/1711.00740, 2018.

[62] Irwan Bello, Hieu Quang Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning. CoRR, abs/1611.09940, 2017.

[63] Alex Nowak, Soledad Villar, Afonso S. Bandeira, and Joan Bruna. A note on learning algorithms
for quadratic assignment with graph neural networks. CoRR, abs/1706.07450, 2017.

[64] Elias Boutros Khalil, Hanjun Dai, Yuyu Zhang, Bistra N. Dilkina, and Le Song. Learning
combinatorial optimization algorithms over graphs. In NIPS, 2017.

[65] Daniel D. Johnson. Learning graphical state transitions. In ICLR, 2017.

[66] Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy S. Liang, Leonardo de Moura, and
David L. Dill. Learning a sat solver from single-bit supervision. CoRR, abs/1802.03685, 2018.

[67] Jessica B. Hamrick, Andrew J. Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess,
and Peter W. Battaglia. Metacontrol for adaptive imagination-based optimization. CoRR,
abs/1705.02670, 2017.

[68] Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sébastien Racaniere,
David P. Reichert, Théophane Weber, Daan Wierstra, and Peter W. Battaglia. Learning model-
based planning from scratch. CoRR, abs/1707.06170, 2017.

[69] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy
with graph neural networks. In ICLR, 2018.

[70] Vinicius Flores Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David P. Reichert, Timothy P. Lillicrap, Edward Lockhart, Mur-
ray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and
Peter W. Battaglia. Relational deep reinforcement learning. CoRR, abs/1806.01830, 2018.

[71] Sam Toyer, Felipe W. Trevizan, Sylvie Thiébaux, and Lexing Xie. Action schema networks:
Generalised policies with deep learning. In AAAI, 2018.

[72] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
ICML, 2018.

[73] Risi Kondor, Hy Truong Son, Horace Pan, Brandon M. Anderson, and Shubhendu Trivedi.
Covariant compositional networks for learning graphs. CoRR, abs/1801.02144, 2018.

16



[74] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Alejandro Romero, Pietro Li6, and
Yoshua Bengio. Graph attention networks. CoRR, abs/1710.10903, 2018.

[75] Wouter Kool. Attention solves your tsp , approximately. 2018.

[76] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2015.

[77] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. CoRR, abs/1703.03130,
2017.

[78] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[79] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W. Battaglia. Learning deep
generative models of graphs. CoRR, abs/1803.03324, 2018.

[80] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. CoRR, abs/1805.11973, 2018.

[81] Jiaxuan You, Zhitao Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. In ICML, 2018.

[82] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Ziigner, and Stephan Giinnemann. Netgan:
Generating graphs via random walks. In ICML, 2018.

[83] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Q. Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. In NAACL-HLT,
2018.

[84] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. 2015.

[85] Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. Yago3: A knowledge
base from multilingual wikipedias. In CIDR, 2014.

[86] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of
knowledge graphs. In AAAI 2016.

17



6 Appendix

6.1 Hyperparameter settings

Table 6: The standard hyperparameter settings we use for each dataset plus their training time for one
epoch. For the experimental analysis, we only adjust one hyperparameter and keep the remaining
fixed at the standard setting. For NELL995, the training time per epoch means the average time cost
of the 12 single-query-relation tasks.

Hyperparameter FB15K-237 FB15K WNI8RR WNI8 YAGO3-10 NELL995
batch_size 80 80 100 100 100 10
n_dims_att 50 50 50 50 50 200
n_dims 100 100 100 100 100 200
max_sampled_edges_per_step 10000 10000 10000 10000 10000 10000
max_attended_nodes_per_step 20 20 20 20 20 100
max_sampled_edges_per_node 200 200 200 200 200 1000
max_seen_nodes_per_step 200 200 200 200 200 1000
n_steps_of_u_flow 2 1 2 1 1 1
n_steps_of_c_flow 6 6 8 8 6 5
learning_rate 0.001 0.001 0.001 0.001 0.0001 0.001
optimizer Adam Adam  Adam  Adam Adam Adam
grad_clipnorm 1 1 1 1 1 1
n_epochs 1 1 1 1 1 3
Training time per epoch (h) { 25.7 63.7 43 8.5 185.0 0.12

Our hyperparameters can be categorized into three groups:

e The normal hyperparameters, including batch_size, n_dims_att, n_dims, learning_rate,

grad_clipnorm, and n_epochs. Here, we set a smaller dimension, n_dims_att, for the
attention flow computation, as it uses more edges for computation than the message passing
uses in the consciousness flow layer, and also intuitively, it does not need to propagate high-
dimensional messages but only compute a scalar score for each of the sampled neighbor
nodes, in concert with the idea in the key-value mechanism [1]]. We set n_epochs = 1 in
most cases, indicating that our model needs to be trained only for one epoch due to its fast
convergence.

The hyperparameters that are in charge of controlling the sampling-attending hori-
zon, including max_sampled_edges_per_step that controls the maximum number to
sample edges per step per query for the message passing in the unconsciousness
flow layer, and max_sampled_edges_per_node, max_attended_nodes_per_step and
max_seen_nodes_per_step that control the maximum number to sample edges connected to
each current node per step per query, the maximum number of current nodes to attend from
per step per query, and the maximum number of neighbor nodes to attend to per step per
query in the consciousness flow layer.

The hyperparameters that are in charge of controlling the searching horizon, including
n_steps_of_u_flow representing the number of steps to run the unconcsiousness flow, and
n_steps_of_c_flow representing the number of steps to run the consciousness flow.

Note that we choose these hyperparameters not only by their performances but also the computation
resources available to us. In some cases, to deal with a very large knowledge graph with limited
resources, we need to make a trade-off between the efficiency and the effectiveness. For example, each
of NELL995’s single-query-relation tasks has a small training set, though still with a large graph, so
we can reduce the batch size in favor of affording larger dimensions and a larger sampling-attending
horizon without any concern for waiting too long to finish one epoch.

6.2 Other experimental analysis

See Figure
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Figure 8: Experimental analysis on FB15K-237: (A) During training we pick six model snapshots
at time points of 0.3, 0.5, 0.7, 1, 2, and 3 epochs and evaluate them on test; (B) The w/o U-Flow
uses zero step to run U-Flow, while the with U-Flow uses two steps; (C)-(F) are for the sampling,

attending and searching horizon analysis based on the standard hyperparameter settings listed in the
appendix.

45A) Time Cost for Different Sampling Horizons  (B) Time Cost for Different Attending-to Horizons - (G) Time Cost for Different Attending-from Horizons (D) Time Cost for Different Searching Horizons . _ (E) Time Cost for Different Batch Sizes
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Figure 9: Analysis of time cost on FB15K-237: (A)-(D) measure the training time for one epoch
on different horizon settings corresponding to Figure [§(C)-(F); (E) measures the training time for
one epoch for different batch sizes using the same horizon setting, which is Max-sampled-edges-per-
node=20, Max-seen-nodes-per-step=20, Max-attended-nodes-per-step=20, and #Steps-of-C-Flow=6.

6.3 Other visualization

For the AthletePlaysInLeague task

Query: (concept_personnorthamerica_matt_treanor, concept:athleteplaysinleague, concept_sportsleague_mlb)

Selected key edges:

concept_personnorthamerica_matt_treanor, concept:athleteflyouttosportsteamposition, concept_sportsteamposition_center
concept_personnorthamerica_matt_treanor, concept:athleteplayssport, concept_sport_baseball
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_personus_orlando_hudson
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_athlete_ben_hendrickson
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_coach_j_j__hardy
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_athlete_hunter_pence
concept_sport_baseball, concept:athleteplayssport_inv, concept_personus_orlando_hudson

concept_sport_baseball, concept:athleteplayssport_inv, concept_athlete_ben_hendrickson

concept_sport_baseball, concept:athleteplayssport_inv, concept_coach_j_j__hardy

concept_sport_baseball, concept:athleteplayssport_inv, concept_athlete_hunter_pence
concept_personus_orlando_hudson, concept:athleteplaysinleague , concept_sportsleague_mlb
concept_personus_orlando_hudson, concept:athleteplayssport, concept_sport_baseball
concept_athlete_ben_hendrickson, concept:coachesinleague, concept_sportsleague_mlb
concept_athlete_ben_hendrickson, concept:athleteplayssport, concept_sport_baseball
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Figure 10: AthletePlaysInLeague. The head is , the query relation is concept:athleteplaysinleague,
and the desired tail is . The left is a full subgraph derived with max_attended_nodes_per_step =
20, and the right is a further extracted subgraph from the left based on attention. The big yellow node
represents the head, and the big red node represents the tail. Colors indicate how important a node is
attended to in a local subgraph. Grey means less important, yellow means it is more attended during
the early steps, and red means it is more attended when getting close to the final step.
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For the AthleteHomeStadium task

Query: (concept_athlete_eli_manning,

Selected key edges:

concept_athlete_eli_manning, concept:
concept_athlete_eli_manning, concept:
concept_athlete_eli_manning, concept:
concept_athlete_eli_manning, concept:
concept_athlete_eli_manning, concept:

concept_sportsteam_new_york_giants,
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concept:athletehomestadium, concept_stadiumoreventvenue_giants_stadium)

personbelongstoorganization, concept_sportsteam_new_york_giants
athleteplaysforteam , concept_sportsteam_new_york_giants
athleteledsportsteam , concept_sportsteam_new_york_giants
athleteplaysinleague, concept_sportsieague_nfl

fatherofperson_inv, concept_male_archie_manning
concept:teamplaysinleague, concept_sportsleague_nfl
concept:teamhomestadium, concept_stadiumoreventvenue_giants_stadium
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concept_stadiumoreventvenue_giants_s
concept_stadiumoreventvenue_giants_s
concept_stadiumoreventvenue_giants_s

concept_city_east_rutherford, concept:proxyfor,
concept_stadiumoreventvenue_paul_brown_stadium,

For the AthletePlaysSport task

Query: (concept_athlete_vernon_wells

tadium, concept:teamhomestadium_inv, concept_sportsteam_new_york_giants
tadium, concept:leaguestadiums_inv, concept_sportsleague_nfl

tadium, concept:proxyfor_inv, concept_city_east_rutherford
concept_stadiumoreventvenue_giants_stadium
concept:leaguestadiums_inv, concept_sportsleague_nfl

concept:athleteplayssport, concept_sport_baseball)
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Figure 11: AthleteHomeStadium. The

head is concept_athlete_eli_manning, the query relation is

concept:athletehomestadium, and the desired tail is concept_stadiumoreventvenue_giants_stadium.

The left is a full subgraph derived with

maz_attended_nodes_per_step = 20, and the right is a

further extracted subgraph from the left based on attention. The big yellow node represents the head,
and the big red node represents the tail. Colors indicate how important a node is attended to in a local
subgraph. Grey means less important, yellow means it is more attended during the early steps, and
red means it is more attended when getting close to the final step.

Selected key edges:

concept_athlete_vernon_wells, concept:
concept_athlete_vernon_wells, concept:
concept_athlete_vernon_wells, concept
concept_athlete_vernon_wells, concept:
concept_athlete_vernon_wells, concept:
concept_athlete_vernon_wells, concept

concept_sportsleague_mlb ,

concept:teamplaysinleague_inv,

athleteplaysinleague , concept_sportsleague_mlb
coachwontrophy, concept_awardtrophytournament_world_series
ragentcollaborateswithagent_inv, concept_sportsteam_blue_jays
personbelongstoorganization, concept_sportsteam_blue_jays
athleteplaysforteam, concept_sportsteam_blue_jays
rathleteledsportsteam , concept_sportsteam_blue_jays

concept_sportsteam_dodgers

concept_sportsleague_mlb, concept:teamplaysinleague_inv, concept_sportsteam_yankees

concept_sportsleague_mlb, concept:teamplaysinleague_inv,

concept_sportsteam_pittsburgh_pirates

concept_awardtrophytournament_world_series, concept:teamwontrophy_inv, concept_sportsteam_dodgers

concept_awardtrophytournament_world_series,
concept_awardtrophytournament_world_series ,

concept_sport_baseball

concept_awardtrophytournament_world_series, concept:teamwontrophy_inv,

concept_sportsteam_blue_jays, concept:
concept_sportsteam_blue_jays, concept:

concept:teamwontrophy_inv, concept_sportsteam_yankees

concept_sportsteam_pittsburgh_pirates
teamplaysinleague , concept_sportsleague_mlb
teamplaysagainstteam, concept_sportsteam_yankees

concept:awardtrophytournamentisthechampionshipgameofthenationalsport,

concept_sportsteam_blue_jays, concept:teamplayssport, concept_sport_baseball
concept_sportsteam_dodgers, concept:teamplaysagainstteam, concept_sportsteam_yankees
concept_sportsteam_dodgers, concept:teamplaysagainstteam_inv, concept_sportsteam_yankees

3

concept_sportsteam_dodgers, concept:teamwontrophy, concept_awardtrophytournament_world_series
concept_sportsteam_dodgers, concept:teamplayssport, concept_sport_baseball
concept_sportsteam_yankees, concept:teamplaysagainstteam, concept_sportsteam_dodgers
concept_sportsteam_yankees, concept:teamplaysagainstteam_inv, concept_sportsteam_dodgers
concept_sportsteam_yankees, concept:teamwontrophy, concept_awardtrophytournament_world_series
concept_sportsteam_yankees, concept:teamplayssport, concept_sport_baseball

concept_sportsteam_yankees, concept:teamplaysagainstteam, concept_sportsteam_pittsburgh_pirates
concept_sportsteam_yankees, concept:teamplaysagainstteam_inv, concept_sportsteam_pittsburgh_pirates
concept_sport_baseball, concept:teamplayssport_inv, concept_sportsteam_dodgers
concept_sport_baseball, concept:teamplayssport_inv, concept_sportsteam_yankees
concept_sport_baseball, concept:awardtrophytournamentisthechampionshipgameofthenationalsport_inv
concept_awardtrophytournament_world_series
concept_sport_baseball, concept:teamplayssport_inv, concept_sportsteam_pittsburgh_pirates
concept_sportsteam_pittsburgh_pirates, concept:teamplaysagainstteam, concept_sportsteam_yankees
concept_sportsteam_pittsburgh_pirates , concept:teamplaysagainstteam_inv, concept_sportsteam_yankees
concept_sportsteam_pittsburgh_pirates, concept:teamwontrophy, concept_awardtrophytournament_world_series
concept_sportsteam_pittsburgh_pirates, concept:teamplayssport, concept_sport_baseball
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Figure 12: AthletePlaysSport. The head is concept_athlete_vernon_wells, the query relation is
concept:athleteplayssport, and the desired tail is concept_sport_baseball. The left is a full subgraph
derived with max_attended_nodes_per_step = 20, and the right is a further extracted subgraph
from the left based on attention. The big yellow node represents the head, and the big red node
represents the tail. Colors indicate how important a node is attended to in a local subgraph. Grey
means less important, yellow means it is more attended during the early steps, and red means it is
more attended when getting close to the final step.

For the TeamPlaysSport task
Query: (concept_sportsteam_red_wings,

Selected key edges:

concept_sportsteam_red_wings, concept:
concept_sportsteam_red_wings, concept:
concept_sportsteam_red_wings, concept:
concept_sportsteam_red_wings, concept:

concept_sportsteam_red_wings ,
concept_sportsteam_red_wings,
concept_sportsteam_red_wings,
concept_sportsteam_red_wings ,

concept:
concept:
concept:
concept:

concept:teamplayssport, concept_sport_hockey)

teamplaysagainstteam, concept_sportsteam_montreal_canadiens

teamplaysagainstteam_inv, concept_sportsteam_montreal
teamplaysagainstteam, concept_sportsteam_blue_jackets
teamplaysagainstteam_inv ,

worksfor_inv, concept_athlete_lidstrom

_canadiens

concept_sportsteam_blue_jackets

organizationhiredperson,
athleteplaysforteam_inv,
athleteledsportsteam_inv,

concept_athlete_lidstrom
concept_athlete_lidstrom
concept_athlete_lidstrom

concept_sportsteam_red_wings

concept_sportsteam_red_wings

concept_sportsteam_montreal_canadiens, concept:teamplaysagainstteam,
concept_sportsteam_montreal_canadiens, concept:teamplaysagainstteam_inv,
concept_sportsteam_montreal_canadiens, concept:teamplaysinleague,
concept_sportsteam_montreal_canadiens, concept:teamplaysagainstteam,
concept_sportsteam_montreal_canadiens, concept:teamplaysagainstteam_inv,

concept_sportsteam_blue_jackets ,
concept_sportsteam_blue_jackets ,

concept:teamplaysagainstteam,
concept:teamplaysagainstteam_inv,

concept_sportsleague_nhl
concept_sportsteam_leafs
concept_sportsteam_leafs
concept_sportsteam_red_wings
concept_sportsteam_red_wings

concept_sportsteam_blue_jackets, concept:teamplaysinleague, concept_sportsleague_nhl
concept_athlete_lidstrom, concept:worksfor, concept_sportsteam_red_wings
concept_athlete_lidstrom, concept:organizationhiredperson_inv, concept_sportsteam_red_wings

concept_athlete_lidstrom ,
concept_athlete_lidstrom ,

concept:athleteplaysforteam,
concept:athleteledsportsteam ,
concept_sportsteam_red_wings, concept:teamplaysinleague,

concept_sportsteam_red_wings
concept_sportsteam_red_wings
concept_sportsleague_nhl

concept_sportsteam_red_wings, concept:teamplaysagainstteam, concept_sportsteam_leafs

concept_sportsteam_red_wings, concept:teamplaysagainstteam_inv,
agentcompeteswithagent,

concept_sportsleague_nhl, concept:

concept_sportsteam_leafs
concept_sportsleague_nhl

concept_sportsleague_nhl, concept:
concept_sportsleague_nhl, concept:
concept_sportsteam_leafs, concept:
concept_sportsteam_leafs, concept:

agentcompeteswithagent_inv,

concept_sportsleague_nhl

teamplaysinleague_inv, concept_sportsteam_leafs
teamplaysinleague , concept_sportsleague_nhl
teamplayssport, concept_sport_hockey

For the OrganizationHeadQuarteredInCity task

Query: (concept_company_disney,

concept:organizationheadquarteredincity ,
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Figure 13: TeamPlaysSport. The head

is concept_sportsteam_red_wings, the query relation is

concept:teamplayssport, and the desired tail is concept_sport_hockey. The left is a full subgraph
derived with max_attended_nodes_per_step = 20, and the right is a further extracted subgraph
from the left based on attention. The big yellow node represents the head, and the big red node
represents the tail. Colors indicate how important a node is attended to in a local subgraph. Grey

means less important, yellow means it is

more attended during the early steps, and red means it is

more attended when getting close to the final step.

Selected key edges:
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_company_disney,
concept_city_burbank,
concept_city_burbank,

concept:
concept:
concept:
concept:
concept:
concept:
concept:
concept:
concept:

headquarteredin,
subpartoforganization_inv ,
worksfor_inv ,
proxyfor_inv,
personleadsorganization_inv ,
ceoof_inv,
personleadsorganization_inv ,
organizationhiredperson ,
organizationterminatedperson
concept:headquarteredin_inv,
concept:headquarteredin_inv ,

concept_city_burbank
concept_website_network
concept_ceo_robert_iger
concept_ceo_robert_iger
concept_ceo_robert_iger
concept_ceo_robert_iger
concept_ceo_jeffrey_katzenberg
concept_ceo_jeffrey_katzenberg
concept_ceo_jeffrey_katzenberg
concept_company_disney
concept_biotechcompany_the_walt_disney_co_

concept_website_network, concept:subpartoforganization, concept_company_disney

concept_ceo_robert_iger, concept:worksfor, concept_company_disney

concept_ceo_robert_iger, concept:proxyfor, concept_company_disney

concept_ceo_robert_iger, concept:personleadsorganization, concept_company_disney

concept_ceo_robert_iger, concept:ceoof, concept_company_disney

concept_ceo_robert_iger, concept:topmemberoforganization, concept_biotechcompany_the_walt_disney_co_
concept_ceo_robert_iger, concept:organizationterminatedperson_inv, concept_biotechcompany_the_walt_disney_co_

concept_ceo_jeffrey_katzenberg, concept:

concept_ceo_jeffrey_katzenberg, concept

:organizationhiredperson_inv,

personleadsorganization, concept_company_disney
concept_company_disney

concept_ceo_jeffrey_katzenberg, concept:organizationterminatedperson_inv, concept_company_disney
concept_ceo_jeffrey_katzenberg, concept:worksfor, concept_recordlabel_dreamworks_skg
concept_ceo_jeffrey_katzenberg, concept:topmemberoforganization, concept_recordlabel_dreamworks_skg
concept_ceo_jeffrey_katzenberg, concept:organizationterminatedperson_inv, concept_recordlabel_dreamworks_skg
concept_ceo_jeffrey_katzenberg, concept:ceoof, concept_recordlabel_dreamworks_skg
concept_biotechcompany_the_walt_disney_co_, concept:headquarteredin, concept_city_burbank

concept_biotechcompany_the_walt_disney_co
concept_recordlabel_dreamworks_skg, concept:
concept_recordlabel_dreamworks_skg, concept:
concept_recordlabel_dreamworks_skg, concept:
concept:
concept:airportincity
concept_transportation_burbank_glendale_pasadena,

concept_recordlabel_dreamworks_skg,
concept_city_burbank,

For the WorksFor task

Query: (concept_scientist_balmer,

concept:worksfor,

_, concept:organizationheadquarteredincity , concept_city_burbank
worksfor_inv, concept_ceo_jeffrey_katzenberg
topmemberoforganization_inv, concept_ceo_jeffrey_katzenberg
organizationterminatedperson, concept_ceo_jeffrey_katzenberg
ceoof_inv, concept_ceo_jeffrey_katzenberg

_inv, concept_transportation_burbank_glendale_pasadena
concept:airportincity , concept_city_burbank

concept_university_microsoft)

23



concept_personfustralia_david_geffen,

concept_persgn_steven spielberg

concept

concept_sgortsieague_espn

concept Gity_emeryvile

concept_ceoffeffre) katzeaberg
concept_politicissug) entertainment

concept_company_{isne) feature_afim:

concept ceo_deorge bodenheimer concept (S pixat

oncept_ublication_espn

concept blog espn the_magazine

‘concept_company disney

concdpt city_anc
concept ety fiew_york

oltigianus-Tody_giuliani concept_pfliticbiog_rights.

concept_cdd_michae! eisqer
concept_campanyfabe television_network

concept_telduisionhetwork_sbc
concept_pefSanelrope_disney

R L TR g—

concdpt.cty lego

concept fusichrtist toy

cept_company klub_penguin

ncept_biotechconfpany the.wialt_disne

concept o rabert iger

concept_dompany_asylum

concept_perfanusiiavid_geffen

concept_persofius steven spielberg

recordlabel_dreamworks_skg

concept_statforprvince_ilinoi
ation
concept_corfipanywalt_disney

concept_transportatiorburbank

ank

concept_acidemiéreld media - concept_company fHalt disne]

concept_pefsonatistralia_jobencept_compay walt_disney |

n_burbank_glendale_pasadena

concept ufiverdty_search

concept_ceo_george_bodenheimer

concept_biotechcompany_ the_walt_disney_co_

concept_recordiabel_treamworks_skg

concept_ceo_jeffrey_katzenberg

concept_website_network

concept_ceé_michael_eisner
concept_company_disney

concept _city_abc

concept_ceo_robert_iger concept_City_ne

Figure 14: OrganizationHeadQuarteredInCity. The head is concept_company_disney, the query
relation is concept:organizationheadquarteredincity, and the desired tail is concept_city_burbank.
The left is a full subgraph derived with max_attended_nodes_per_step = 20, and the right is a
further extracted subgraph from the left based on attention. The big yellow node represents the head,
and the big red node represents the tail. Colors indicate how important a node is attended to in a local
subgraph. Grey means less important, yellow means it is more attended during the early steps, and
red means it is more attended when getting close to the final step.

Selected key edges:

concept_scientist_balmer, concept:topmemberoforganization, concept_company_microsoft

concept_scientist_balmer,

concept:organizationterminatedperson_inv ,

concept_university_microsoft

concept_company_microsoft, concept:topmemberoforganization_inv,
concept_company_microsoft, concept:topmemberoforganization_inv,

concept_personus_steve_ballmer
concept_scientist_balmer

concept_university_microsoft ,
concept_university_microsoft ,
concept_university_microsoft,
concept_university_microsoft,
concept_university_microsoft,

concept:agentcollaborateswithagent, concept_personus_steve_ballmer

concept
concept
concept

:personleadsorganization_inv ,
:personleadsorganization_inv,
:organizationterminatedperson,

concept_personus_steve_ballmer
concept_person_bill
concept_scientist_balmer

concept:personleadsorganization_inv, concept_person_robbie_bach

concept_personus_steve_ballmer, concept:topmemberoforganization, concept_company_microsoft
concept_personus_steve_ballmer, concept:agentcollaborateswithagent_inv, concept_university_microsoft
concept_personus_steve_ballmer, concept:personleadsorganization, concept_university_microsoft
concept_personus_steve_ballmer, concept:worksfor, concept_university_microsoft
concept_personus_steve_ballmer, concept:proxyfor, concept_retailstore_microsoft
concept_personus_steve_ballmer, concept:subpartof, concept_retailstore_microsoft
concept_personus_steve_ballmer, concept:agentcontrols, concept_retailstore_microsoft

concept_person_bill , concept:personleadsorganization,
concept_person_bill, concept:worksfor,
concept_person_robbie_bach, concept:personleadsorganization,
concept_person_robbie_bach, concept:worksfor,
concept_retailstore_microsoft, concept:proxyfor_inv,

concept_retailstore_microsoft, concept:subpartof_inv,

concept_university_microsoft
concept_university_microsoft
concept_university_microsoft
concept_university_microsoft
concept_personus_steve_ballmer
concept_personus_steve_ballmer

concept_retailstore_microsoft, concept:agentcontrols_inv, concept_personus_steve_ballmer

For the PersonBornInLocation task

Query: (concept_person_mark001, concept:personborninlocation,

Selected key edges:

concept_county_york_city)

concept_university_college

concept_university_state_university
concept_university_state_university

concept_person_mark001, concept:persongraduatedfromuniversity ,
concept_person_mark001, concept:persongraduatedschool, concept_university_college
concept_person_mark001, concept:persongraduatedfromuniversity ,
concept_person_mark001, concept:persongraduatedschool,

concept_person_mark001, concept:personbornincity, concept_city_hampshire
concept_person_mark001, concept:hasspouse, concept_person_diane001
concept_person_mark001, concept:hasspouse_inv, concept_person_diane001
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Figure 15: WorksFor. The head is concept_scientist_balmer, the query relation is concept:worksfor,
and the desired tail is concept_university_microsoft. The left is a full subgraph derived with
maz_attended_nodes_per_step = 20, and the right is a further extracted subgraph from the
left based on attention. The big yellow node represents the head, and the big red node represents
the tail. Colors indicate how important a node is attended to in a local subgraph. Grey means less
important, yellow means it is more attended during the early steps, and red means it is more attended
when getting close to the final step.

concept_university_college, concept:persongraduatedfromuniversity_inv, concept_person_mark001
concept_university_college, concept:persongraduatedschool_inv, concept_person_mark001
concept_university_college, concept:persongraduatedfromuniversity_inv, concept_person_bill
concept_university_college, concept:persongraduatedschool_inv, concept_person_bill
concept_university_state_university , concept:persongraduatedfromuniversity_inv, concept_person_mark001
concept_university_state_university , concept:persongraduatedschool_inv, concept_person_mark001
concept_university_state_university , concept:persongraduatedfromuniversity_inv, concept_person_bill
concept_university_state_university , concept:persongraduatedschool_inv, concept_person_bill
concept_city_hampshire, concept:personbornincity_inv, concept_person_mark001

concept_person_diane001, concept:persongraduatedfromuniversity, concept_university_state_university
concept_person_diane001, concept:persongraduatedschool, concept_university_state_university
concept_person_diane001, concept:hasspouse, concept_person_mark001

concept_person_diane001, concept:hasspouse_inv, concept_person_mark001

concept_person_diane001, concept:personborninlocation, concept_county_york_city
concept_university_state_university , concept:persongraduatedfromuniversity_inv, concept_person_diane001
concept_university_state_university , concept:persongraduatedschool_inv, concept_person_diane001

concept_person_bill, concept:personbornincity, concept_city_york

concept_person_bill , concept:personborninlocation, concept_city_york

concept_person_bill , concept:persongraduatedfromuniversity , concept_university_college
concept_person_bill, concept:persongraduatedschool, concept_university_college
concept_person_bill, concept:persongraduatedfromuniversity, concept_university_state_university
concept_person_bill, concept:persongraduatedschool, concept_university_state_university

concept_city_york, concept:personbornincity_inv, concept_person_bill

concept_city_york, concept:personbornincity_inv, concept_person_diane001
concept_university_college, concept:persongraduatedfromuniversity_inv, concept_person_diane001
concept_person_diane001, concept:personbornincity , concept_city_york

For the PersonLeadsOrganization task

Query: (concept_journalist_bill_plante , concept:personleadsorganization, concept_company_cnn__pbs)

Selected key edges:

concept_journalist_bill_plante , concept:worksfor, concept_televisionnetwork_cbs
concept_journalist_bill_plante, concept:agentcollaborateswithagent_inv, concept_televisionnetwork_cbs
concept_televisionnetwork_cbs, concept:worksfor_inv, concept_journalist_walter_cronkite
concept_televisionnetwork_cbs, concept:agentcollaborateswithagent, concept_journalist_walter_cronkite
concept_televisionnetwork_cbs, concept:worksfor_inv, concept_personus_scott_pelley
concept_televisionnetwork_cbs , concept:worksfor_inv, concept_actor_daniel_schorr
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Figure 16: PersonBornInLocation. The head is concept_person_mark001, the query relation is
concept:personborninlocation, and the desired tail is concept_county_york_city. The left is a full
subgraph derived with max_attended_nodes_per_step = 20, and the right is a further extracted
subgraph from the left based on attention. The big yellow node represents the head, and the big red
node represents the tail. Colors indicate how important a node is attended to in a local subgraph.
Grey means less important, yellow means it is more attended during the early steps, and red means it
is more attended when getting close to the final step.

concept_televisionnetwork_cbs, concept:worksfor_inv, concept_person_edward_r__murrow
concept_televisionnetwork_cbs, concept:agentcollaborateswithagent, concept_person_edward_r__murrow
concept_televisionnetwork_cbs , concept:worksfor_inv, concept_journalist_bill_plante
concept_televisionnetwork_cbs, concept:agentcollaborateswithagent, concept_journalist_bill_plante
concept_journalist_walter_cronkite , concept:worksfor, concept_televisionnetwork_cbs
concept_journalist_walter_cronkite , concept:agentcollaborateswithagent_inv, concept_televisionnetwork_cbs
concept_journalist_walter_cronkite, concept:worksfor, concept_nonprofitorganization_cbs_evening
concept_personus_scott_pelley, concept:worksfor, concept_televisionnetwork_cbs
concept_personus_scott_pelley, concept:personleadsorganization, concept_televisionnetwork_cbs
concept_personus_scott_pelley, concept:personleadsorganization, concept_company_cnn__pbs
concept_actor_daniel_schorr, concept:worksfor, concept_televisionnetwork_cbs
concept_actor_daniel_schorr, concept:personleadsorganization, concept_televisionnetwork_cbs
concept_actor_daniel_schorr, concept:personleadsorganization, concept_company_cnn__pbs
concept_person_edward_r__murrow, concept:worksfor, concept_televisionnetwork_cbs
concept_person_edward_r__murrow, concept:agentcollaborateswithagent_inv, concept_televisionnetwork_cbs
concept_person_edward_r__murrow, concept:personleadsorganization, concept_televisionnetwork_cbs
concept_person_edward_r__murrow, concept:personleadsorganization, concept_company_cnn__pbs
concept_televisionnetwork_cbs, concept:organizationheadquarteredincity , concept_city_new_york
concept_televisionnetwork_cbs, concept:headquarteredin, concept_city_new_york
concept_televisionnetwork_cbs , concept:agentcollaborateswithagent, concept_personeurope_william_paley
concept_televisionnetwork_cbs, concept:topmemberoforganization_inv, concept_personeurope_william_paley
concept_company_cnn__pbs, concept:headquarteredin, concept_city_new_york

concept_company_cnn__pbs, concept:personbelongstoorganization_inv, concept_personeurope_william_paley
concept_nonprofitorganization_cbs_evening, concept:worksfor_inv, concept_journalist_walter_cronkite
concept_city_new_york, concept:organizationheadquarteredincity_inv, concept_televisionnetwork_cbs
concept_city_new_york, concept:headquarteredin_inv, concept_televisionnetwork_cbs
concept_city_new_york, concept:headquarteredin_inv, concept_company_cnn__pbs
concept_personeurope_william_paley, concept:agentcollaborateswithagent_inv, concept_televisionnetwork_cbs
concept_personeurope_william_paley, concept:topmemberoforganization, concept_televisionnetwork_cbs
concept_personeurope_william_paley, concept:personbelongstoorganization, concept_company_cnn__pbs
concept_personeurope_william_paley, concept:personleadsorganization, concept_company_cnn__pbs

For the OrganizationHiredPerson task

Query: (concept_stateorprovince_afternoon, concept:organizationhiredperson, concept_personmexico_ryan_whitney)

Selected key edges:
concept_stateorprovince_afternoon, concept:atdate, concept_dateliteral_n2007
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Figure 17: PersonLeadsOrganization. The head is concept_journalist_bill_plante, the query rela-
tion is concept:organizationheadquarteredincity, and the desired tail is concept_company_cnn__pbs.
The left is a full subgraph derived with max_attended_nodes_per_step = 20, and the right is a
further extracted subgraph from the left based on attention. The big yellow node represents the head,
and the big red node represents the tail. Colors indicate how important a node is attended to in a local
subgraph. Grey means less important, yellow means it is more attended during the early steps, and
red means it is more attended when getting close to the final step.

concept_stateorprovince_afternoon, concept:atdate, concept_date_n2003
concept_stateorprovince_afternoon, concept:atdate, concept_dateliteral_n2006
concept_dateliteral_n2007, concept:atdate_inv, concept_country_united_states
concept_dateliteral_n2007, concept:atdate_inv, concept_city_home
concept_dateliteral_n2007, concept:atdate_inv, concept_city_service
concept_dateliteral_n2007, concept:atdate_inv, concept_country_left_parties
concept_date_n2003, concept:atdate_inv, concept_country_united_states
concept_date_n2003, concept:atdate_inv, concept_city_home
concept_date_n2003, concept:atdate_inv, concept_city_service
concept_date_n2003, concept:atdate_inv, concept_country_left_parties

concept_dateliteral_n2006 , concept:atdate_inv,
concept_dateliteral_n2006 , concept:atdate_inv,
concept_dateliteral_n2006 , concept:atdate_inv,
concept_dateliteral_n2006 , concept:atdate_inv,
concept_country_united_states, concept:atdate,
concept_country_united_states, concept:atdate,

concept_country_united_states
concept_city_home
concept_city_service
concept_country_left_parties
concept_year_n1992
concept_year_n1997

concept_country_united_states, concept:organizationhiredperson, concept_personmexico_ryan_whitney
concept_city_home, concept:atdate, concept_year_n1992

concept_city_home, concept:atdate, concept_year_n1997

concept_city_home, concept:organizationhiredperson, concept_personmexico_ryan_whitney
concept_city_service, concept:atdate, concept_year_n1992

concept_city_service, concept:atdate, concept_year_n1997

concept_city_service, concept:organizationhiredperson, concept_personmexico_ryan_whitney
concept_country_left_parties, concept:worksfor_inv, concept_personmexico_ryan_whitney
concept_country_left_parties, concept:organizationhiredperson, concept_personmexico_ryan_whitney

concept_year_n1992, concept:atdate_inv, concept_governmentorganization_house
concept_year_n1992, concept:atdate_inv, concept_country_united_states
concept_year_n1992, concept:atdate_inv, concept_city_home
concept_year_n1992, concept:atdate_inv, concept_tradeunion_congress
concept_year_n1997, concept:atdate_inv, concept_governmentorganization_house
concept_year_n1997, concept:atdate_inv, concept_country_united_states
concept_year_n1997, concept:atdate_inv, concept_city_home

concept_personmexico_ryan_whitney, concept:worksfor, concept_governmentorganization_house
concept_personmexico_ryan_whitney, concept:worksfor, concept_tradeunion_congress
concept_personmexico_ryan_whitney, concept:worksfor, concept_country_left_parties
concept_governmentorganization_house, concept:personbelongstoorganization_inv, concept_personus_party
concept_governmentorganization_house, concept:worksfor_inv, concept_personmexico_ryan_whitney
concept_governmentorganization_house, concept:organizationhiredperson, concept_personmexico_ryan_whitney
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Figure 18: OrganizationHiredPerson.
the query relation is
concept_personmexico_ryan_whitney.
max_attended_nodes_per_step =

The

The head is concept_stateorprovince_afternoon,
concept:organizationhiredperson, and the
left is
20, and the right is a further extracted subgraph from

desired tail is

a full subgraph derived with

the left based on attention. The big yellow node represents the head, and the big red node represents
the tail. Colors indicate how important a node is attended to in a local subgraph. Grey means less
important, yellow means it is more attended during the early steps, and red means it is more attended

when getting close to the final step.

concept_tradeunion_congress, concept:organizationhiredperson, concept_personus_party
concept_tradeunion_congress, concept:worksfor_inv, concept_personmexico_ryan_whitney
concept_tradeunion_congress, concept:organizationhiredperson, concept_personmexico_ryan_whitney
concept_country_left_parties, concept:organizationhiredperson, concept_personus_party

For the AgentBelongsToOrganization task

Query: (concept_person_mark001, concept:agentbelongstoorganization, concept_geopoliticallocation_world)

Selected key edges:
concept_person_mark001 ,
concept_person_mark001 ,

concept:personbelongstoorganization, concept_sportsteam_state_university
concept:agentcollaborateswithagent, concept_male_world

concept_person_mark001, concept:agentcollaborateswithagent_inv, concept_male_world
concept_person_mark001, concept:personbelongstoorganization, concept_politicalparty_college
concept_sportsteam_state_university , concept:personbelongstoorganization_inv, concept_politician_jobs
concept_sportsteam_state_university , concept:personbelongstoorganization_inv, concept_person_mark001
concept_sportsteam_state_university , concept:personbelongstoorganization_inv, concept_person_greg001
concept_sportsteam_state_university , concept:personbelongstoorganization_inv, concept_person_michael002
concept_male_world, concept:agentcollaborateswithagent, concept_politician_jobs

concept_male_world, concept:agentcollaborateswithagent_inv, concept_politician_jobs
concept_male_world, concept:agentcollaborateswithagent, concept_person_mark001

concept_male_world, concept:agentcollaborateswithagent_inv, concept_person_mark001
concept_male_world, concept:agentcollaborateswithagent, concept_person_greg001

concept_male_world, concept:agentcollaborateswithagent_inv, concept_person_greg001
concept_male_world, concept:agentcontrols, concept_person_greg001

concept_male_world, concept:agentcollaborateswithagent, concept_person_michael002
concept_male_world, concept:agentcollaborateswithagent_inv, concept_person_michael002
concept_politicalparty_college , concept:personbelongstoorganization_inv, concept_person_mark001
concept_politicalparty_college , concept:personbelongstoorganization_inv, concept_person_greg001
concept_politicalparty_college , concept:personbelongstoorganization_inv, concept_person_michael002
concept_politician_jobs , concept:personbelongstoorganization, concept_sportsteam_state_university
concept_politician_jobs , concept:agentcollaborateswithagent, concept_male_world
concept_politician_jobs , concept:agentcollaborateswithagent_inv, concept_male_world
concept_politician_jobs , concept:worksfor, concept_geopoliticallocation_world
concept_person_greg001, concept:personbelongstoorganization, concept_sportsteam_state_university
concept_person_greg001, concept:agentcollaborateswithagent, concept_male_world
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Figure 19: AgentBelongsToOrganization. The head is concept_person_mark001, the query relation
is concept:agentbelongstoorganization, and the desired tail is concept_geopoliticallocation_world.
The left is a full subgraph derived with max_attended_nodes_per_step = 20, and the right is a
further extracted subgraph from the left based on attention. The big yellow node represents the head,
and the big red node represents the tail. Colors indicate how important a node is attended to in a local
subgraph. Grey means less important, yellow means it is more attended during the early steps, and
red means it is more attended when getting close to the final step.

concept_person_greg001, concept:agentcollaborateswithagent_inv, concept_male_world
concept_person_greg001, concept:agentcontrols_inv, concept_male_world

concept_person_greg001, concept:agentbelongstoorganization, concept_geopoliticallocation_world
concept_person_greg001, concept:personbelongstoorganization, concept_politicalparty_college
concept_person_greg001, concept:agentbelongstoorganization, concept_recordlabel_friends
concept_person_michael002, concept:personbelongstoorganization, concept_sportsteam_state_university
concept_person_michael002, concept:agentcollaborateswithagent, concept_male_world
concept_person_michael002, concept:agentcollaborateswithagent_inv, concept_male_world
concept_person_michael002, concept:agentbelongstoorganization, concept_geopoliticallocation_world
concept_person_michael002, concept:personbelongstoorganization, concept_politicalparty_college
concept_geopoliticallocation_world , concept:worksfor_inv, concept_personmexico_ryan_whitney
concept_geopoliticallocation_world , concept:organizationhiredperson, concept_personmexico_ryan_whitney
concept_geopoliticallocation_world, concept:worksfor_inv, concept_politician_jobs
concept_recordlabel_friends , concept:organizationhiredperson, concept_personmexico_ryan_whitney
concept_personmexico_ryan_whitney, concept:worksfor, concept_geopoliticallocation_world
concept_personmexico_ryan_whitney, concept:organizationhiredperson_inv, concept_geopoliticallocation_world
concept_personmexico_ryan_whitney, concept:organizationhiredperson_inv, concept_recordlabel_friends

For the TeamPlaysInLeague task

Query: (concept_sportsteam_mavericks, concept:teamplaysinleague, concept_sportsleague_nba)

Selected key edges:

concept_sportsteam_mavericks, concept:teamplayssport, concept_sport_basketball
concept_sportsteam_mavericks , concept:teamplaysagainstteam, concept_sportsteam_boston_celtics
concept_sportsteam_mavericks, concept:teamplaysagainstteam_inv, concept_sportsteam_boston_celtics
concept_sportsteam_mavericks , concept:teamplaysagainstteam, concept_sportsteam_spurs
concept_sportsteam_mavericks , concept:teamplaysagainstteam_inv, concept_sportsteam_spurs
concept_sport_basketball, concept:teamplayssport_inv, concept_sportsteam_college
concept_sport_basketball, concept:teamplayssport_inv, concept_sportsteam_marshall_university
concept_sportsteam_boston_celtics , concept:teamplaysinleague, concept_sportsleague_nba
concept_sportsteam_spurs, concept:teamplaysinleague, concept_sportsleague_nba
concept_sportsleague_nba, concept:agentcompeteswithagent, concept_sportsieague_nba
concept_sportsleague_nba, concept:agentcompeteswithagent_inv, concept_sportsleague_nba
concept_sportsteam_college, concept:teamplaysinleague, concept_sportsleague_international
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Figure 20: TeamPlaysInl.eague. The head is concept_sportsteam_mavericks, the query relation
is concept:teamplaysinleague, and the desired tail is concept_sportsleague_nba. The left is a full
subgraph derived with max_attended_nodes_per_step = 20, and the right is a further extracted
subgraph from the left based on attention. The big yellow node represents the head, and the big red
node represents the tail. Colors indicate how important a node is attended to in a local subgraph.
Grey means less important, yellow means it is more attended during the early steps, and red means it

is more attended when getting close to the final step.
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