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Abstract

In this paper, we introduce a novel interpreting framework that learns an inter-
pretable model based on an ontology-based sampling technique to explain agnostic
prediction models. Different from existing approaches, our algorithm considers
contextual correlation among words, described in domain knowledge ontologies, to
generate semantic explanations. To narrow down the search space for explanations,
which is a major problem of long and complicated text data, we design a learnable
anchor algorithm, to better extract explanations locally. A set of regulations is
further introduced, regarding combining learned interpretable representations with
anchors to generate comprehensible semantic explanations. An extensive exper-
iment conducted on two real-world datasets shows that our approach generates
more precise and insightful explanations compared with baseline approaches.

1 Introduction

In critical scenarios, such as clinical practices, having the ability to interpret machine learning (ML)
model outcomes is significant to reduce the error rate and improve the trustworthiness of ML-based
systems [1–3]. To achieve this, typical approaches, called Interpretable ML (IML), are to train
additional interpretable models to generate explanations, which usually are crucial input features (i.e.,
important terms, in text analysis [2, 4] or super-pixels, in image processing [5, 6]), for each predicted
outcome. However, most of existing IML algorithms usually treat input features independently,
without considering their semantic correlations, especially in natural language processing. As a result,
generated explanations commonly are fragmented, incomplete, and difficult to understand.

Addressing this problem is a non-trivial task, since: (1) It is difficult to capture semantic correlations
among features, which can be contextually rich and dynamic; (2) There is still a lack of scientific study
on how to integrate semantic correlations among features into IML to generate good explanations,
which are concise, complete, and easy to understand; and (3) The search space for good explanations
can be large and complicated, given noisy and poor data. That results in a limited understanding of
how to define good explanations, and of how to effectively and efficiently identify them.

In literature, ontology, which encodes domain knowledge, can be used to capture semantic correlations
among input features, such as entities, terms, phrases, concepts, etc. [7, 8]. However, there is an
unexplored gap regarding how to guide the learning process of an IML model based on ontology.
Straightforwardly matching ontology and explaining data points, by randomly sampling co-occurring
terms and concepts in conventional approaches, e.g., LIME [4], cannot generate good explanations,
since contextual information in the data is usually very rich compared with the ontology. In addition,
building an ontology that can sufficiently capture contextual information in the data is very expensive.
Meanwhile, the traditional concept of anchor text [9] can be used to narrow down the search space,
by pinpointing generally important text. However, the approach was not designed for each single and
independent data point, i.e., at local level.
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Our contributions. To synergistically overcome these challenging issues, we propose a novel
Ontology-based IML (OnML), to generate good explanations. In our approach, text data is first
classified by a prediction model. Then, we learn a linear interpretable model by approximating the
predictive model based on data sampled around the prediction outcome. In constrast to existing
approaches, in our sampling, correlated words and concepts are extracted and sampled together.

Second, we introduce a new concept of learnable anchor texts, to narrow down the search space for
explanations. A learnable anchor text essentially is a contextual phrase, which can be expanded by
adding nearby terms, without affecting the impact of the ‘anchor’ to the model outcome. For instance,
anchors can be started with a term that has negative meanings, e.g., “no," or “not," and then expanded
to neighboring texts to effectively capture negative experiences and events, e.g., “not get any help."

Finally, we introduce a set of regulations to combine correlated words, terms, and concepts, learned
anchor texts, and triplexes extracted from the text, to generate semantic explanations. Each generated
explanation will be assigned an importance score, measuring its impact upon the model outcome. To
our knowledge, our approach establishes the first connection among domain knowledge ontology,
IML, and learnable anchor texts. Such a mechanism will greatly extend the applicability of machine
learning, by fortifying the models in both interpretability and trustworthiness.

Extensive experiments conducted on two real-word datasets in critical applications, including drug
abuse in the Twitter-sphere [10] and consumer complaint analysis1, to quantitatively and qualitatively
evaluate our OnML approach, show that our algorithm generates concise, complete, and easy-to-
understand explanations, compared with existing mechanisms.

2 Background and Problem Definition

In this section, we revisit IML, ontology-based approaches, and information extraction algorithms,
which are often used to generate explanations. We further discuss the relation to previous frameworks
and introduce our problem definition.

Let D be a database that consists of N samples. A classifier outputs class scores f : Rd → RK that
maps inputs x ∈ Rd to a vector of scores f(x) = {f1(x), f2(x), . . . , fK(x)} s.t. ∀k ∈ [1,K] :

fk(x) ∈ [0, 1] and
∑K

k=1 fk(x) = 1. The highest-score class is selected as the predicted label for x.

Interpretable learning. Let us briefly revisit interpretable learning techniques, starting with the
definition of interpretable model. Given an interpretable model g, which provides insights and
qualitative understanding about the model f given an input x, interpretability is closely related to
the ability of humans to understand the model; therefore, g must have a low complexity to generate
understandable explanations. In practice, the complexity usually is measured by a function T (g),
which basically is the number of important words [2, 4], based upon that users can handle to evaluate
the generated explanation. Another essential criterion for interpretability is local fidelity, which
implies the ability of g to approximate the model f in a vicinity of the input x.

Let z be a sample of x, where z is generated by randomly selecting or removing features/words in x.
φx(z) is a similarity function to measure the proximity between x and z. Given a d′-dimensional
binary vector z′ ∈ {0, 1}d′

, z′i = 1 indicates that the feature i-th (∈ x) is present in z, and vice-versa.

To achieve the interpretability and local fidelity, [4] minimizes a loss function L(f, g, φx), with a low
complexity T (g), by solving the following problem:

g∗ = arg min
g
L(f, g, φx) + T (g) (1)

where L(f, g, φx) =
∑

z φx(z)(f(z) − g(z′))2, φx(z) = exp(−D(x, z)2/σ2) is an exponential
kernel with D(x, z) is a distance function (e.g., cosine distance) with a width σ, and g(z′) = wgz

′.

To obtain the data z for learning g in Eq. 1, sampling approaches are employed. In LIME [4], the
authors draw nonzero elements of the original data x uniformly at random. Similar to this approach, a
number of works follow [11–13]. Apart from the randomization, model decomposition is another line
of learning g [1, 2], in which the prediction f(x) is decomposed on individual features to learn the
effect of each feature on the outcome. These existing randomization and decomposition approaches

1https://www.consumerfinance.gov/data-research/consumer-complaints/
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(a) A flow chart of the OnML approach. (b) Drug abuse ontology.

Figure 1: OnML approach and Drug abuse ontology example.

treat features independently; therefore, they cannot capture correlations among features. This may
not be practical in real-world scenarios, since features usually are highly and semantically correlated.

Ontology-based approaches. To capture semantic correlations among input features, ontology,
which studies related concepts and their relations, can be applied. Ontology is used in [14] to filter
and rank concepts from selected data points to conduct informative explanations. The explanations
are derived in ontological forms. For example, the information, “a 30 year-old individual, with
an operation occurred in 1964,” can be conveyed by the representation, “TheSilentGeneration u
OperationIn1960s.” (TheSilentGeneration denotes people in the age range of 30-39.)

In [8], authors use ontology to learn an understandable decision tree, which is an approximation of a
neural network classifier. Explanations are in a non-syntactic form, and they are not designed for a
single and independent data point. Different from [8], we aim at generating semantic explanations for
each input x. In this paper, generating semantic explanations is defined as a process of mapping a
text to a representation of important information in a syntactic and understandable form.

Information extraction. Apart from interpretable learning, information extraction (IE) is another
direction to capture contextual information semantically. The first Open IE algorithm is TextRunner
[15], which identifies arbitrary relation phrases in English sentences by automatically labeling data
using heuristics for training the extractor. Following TextRunner, a number of Open IE frameworks
[16–18] were introduced. Unfortunately, these approaches ignore the context. OLLIE [19] includes
contextual information; and extracts relations mediated by nouns, adjectives, and verbs; and outputs
triplexes (subject, predicate, and object). Compared to Open IE approaches, our algorithm mainly
focuses on generating semantic explanations associated with the prediction label.

3 Ontology-based Interpretable Machine Learning with Learnable Anchors

In this section, we formally present our OnML with learnable anchors (Fig. 1a). Alg. 1 presents the
main steps of our approach. Given an input x, an ontology O, and a set of all concepts C in O, we
first present the notion of ontology-based tuples (Line 3), which will be used in an ontology-based
sampling technique to learn the interpretable model g (Lines 4-6). Next, we learn potential anchor
texts using the input x and the model f(x) (Line 7). Meanwhile, OLIIE [19] is applied to extract
triplexes, which have high confident scores, in x (Line 8). After learning g, learning anchor texts A,
and extracting triplexes T , we introduce a set of regulations to combine them together to generate
semantic explanations (Line 9). Let us first present the notion of ontology-based tuples as follows.

3.1 Ontology-based tuples

Given concepts A and B, A 7→ B is used to indicate that A has a directed connection to B. In
considerably correlated domains, such as text data, it is observed that 1) surrounding words affect
the contextual information of the certain word; and 2) different sentences usually have different
contextual information. To encode the observations, we introduce a contextual constraint, as follows:

λxk
(xl) ≤ γ (2)
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Algorithm 1 OnML approach
1: Input: Input x; ontology O, and user-predefined anchor A0

2: Classify x by a prediction model f : Rd → RK

3: Find ontology-based tuples (xi, xj) in x based on concepts and relations in O
4: Sample x, based on ontology-based tuples found by our sampling technique to obtain sampled data z ∈ Z
5: Generate vectors of predictive scores f(z) with z ∈ Z
6: Learn an interpretable model g based on f(z) and g(z′) by Eq. 1
7: Learn anchor text by our anchor learning algorithm (as shown in Alg. 2)
8: Extract triplexes in x using an existing Open information technique
9: Combine correlated terms, learned anchors, and extracted triplexes by our proposed regulations

10: Output: Semantic explanation E

where xk and xl are two words in x, γ is a predefined threshold, and λxk
(xl) measures the distance

between the positions of xk and xl in x. In text data, if xk and xl belong to two sentences in x, they
are considered to be violating the contextual constraint.
Definition 1. Ontology-based tuple. Given xk and xl in x, (xk, xl) is called an ontology-based tuple,
if and only if: (1) ∃A,B ∈ C s.t. xk ∈ A and xl ∈ B; (2) A 7→ B; and (3) λxk

(xl) ≤ γ.

Since ontology has directed connections among its concepts, ontology-based tuples are asymmetric,
i.e., (xk, xl) and (xl, xk) are different. For the sake of clarity without affecting the generality, we use
a drug abuse ontology as an example (Fig. 1b). Given the drug abuse ontology and x that is “Smoke
typically causes addiction.", “Smoke," and “addiction" are in “Abuse Behavior," and “Side Effect"
concepts. Following the aforementioned conditions (with γ = 4), an ontology-based tuple (Smoke,
addiction) is found in x.

3.2 Ontology-based sampling technique

To integrate ontology-based tuples into learning g, we introduce a novel ontology-based sampling
technique. To learn the local behavior of f in its vicinity (Eq. 1), we approximate L(f, g, φx) by
drawing samples based on x, with the proximity indicated by φ(x). A sample z can be sampled as:

z =
(
∪xi∈x,i6=k,i 6=l R(xi)

)
∪R({xk, xl}) (3)

where R(α) is a probability randomly drawn for each word α in x. If R(α) is greater than a
pre-defined threshold, then α will be included in z.

In our sampling process, xk and xl, i.e., an ontology-based tuple, are sampled together as a single
element. This aims to integrate the semantic correlation between xk and xl, captured in an ontology-
based tuple into the sampling process. In fact, we are sampling the semantic correlation, but not
sampling each word/feature xk or xl independently. This enables us to measure the impact of this
semantic correlation on f(x). In addition, words, which are not in any ontology-based tuple, are
sampled independently. After sampling x (as shown in Eq. 3), we obtain the dataset Z that consists
of sampled data points z associated with its label f(z). Z is used to learn g∗ by solving Eq. 1.

3.3 Learnable anchor text

Before presenting our anchor text mechanism, we introduce an importance score notion, which will
be used in choosing the best anchor and calculating the importance of generated explanations.

Importance score. To get insight into the importance of generated explanations and their impact
upon the model outcome, we calculate an importance score (IC) for each explanation. Intuitively,
the higher importance score, the more important the explanation is. The IC is calculated as:

IC(r) = c̄r

(
f(x)− f(x/r)

)
(4)

where x/r is the original text x excluding words in the explanation r and c̄r is average coefficients of
g∗ associated with all words in r.

Anchor text learning mechanism. It is challenging to work with long and poor data, e.g., large
number of words, or misspelled text, since the contextual information is generally rich and compli-
cated. Building an ontology to adequately represent such data is expensive, and insufficient in many
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Algorithm 2 Anchors learning algorithm
1: Input: Input x; prediction model f ; number of sentences in x, denoted as M ; user-predefined anchors A0

2: A ← ∅ (A : set of anchors for x)
3: for i ∈M do
4: if any A0 appears in the sentence i then
5: Denote DA as a set of ordered words appearing after A0 in the sentence i in x
6: An ← ∅ (An is a set of candidate anchors)
7: Fn ← ∅ (Fn is a set of importance scores, associated with each candidate anchor)
8: for xj ∈ DA do
9: An ← A0 ∪ xj ; A0 ← An; Fn ← Fn ∪ IC(An)

10: Choose the best anchor for sentence i: Ai = arg maxAn Fn

11: else
12: Ai ← ∅
13: A ← A∪Ai

14: Output: A

cases. That results in a large undercovered search space for explanations. To address this problem,
we introduce a learnable anchor mechanism to narrow down the search space.

The learning anchor technique is presented in Alg. 2. The anchor is initialized with an empty set
(Line 2). A set of user-predefined anchors A0 is provided, which consists of starting-words that are
further expanded by incrementally adding words to the end of the sentence. Then, the importance
score of each candidate anchor is calculated, following Eq. 4. The top-1 anchor A, which has the
highest important score, for each sentence are then chosen from candidate anchors.

3.4 Generating semantic explanations

We further apply OLLIE to extract triplexes T (subject, predicate, and object) to identify the syntactic
structure in a specific sentence, which can be used to shape our explanations in a readable form.
To generate semantic explanations E , we introduce a set of regulations to combine g∗, A, and T
together:

• 1) E ⊆ Dx with Dx is a set of all words in x.

• 2) If there is no ontology-based tuple found, E will only consist of the learned anchor texts.

• 3) In a sentence, if there are two or more ontology-based tuples, we introduce three rules to
merge them together, as follows:

– Simplification rule:
∗ Given (xk, xl) and (xk, xm), if xl and xm are in the same concept, then the

ontology-based explanation is {xk xl and/or xm}.
∗ Given (xk, xm) and (xl, xm), if xk and xl are in the same concept, then the

ontology-based explanation is {xk and/or xl xm}.
∗ Given (xk, xl) and (xl, xm), then the ontology-based explanation is {xk xl xm}.

– Union rule: Given (xk, xl), (xk, xm), (xl, xm), and {xk, xl, xm}, the ontology-based
explanation is {xk xl xm}.

– Adding Causal words rule: Semantic explanation can be in the form of a causal
relation. Thus, if a causal word, e.g., “because," “since," “therefore," “as," “so,"
“while," “whereas," “thus," “thereby," “meanwhile, “however," “hence," “otherwise,"
“consequently," “when," “whenever" appears between any words in ontology-based
tuples/explanations, we add the word to the explanation, following its position in x.

– Combining with anchor texts A and triplexes T : After having the ontology-based
explanation, we combine them with A and T based on their positions in x. Then, the
semantic explanation is generated from the beginning towards the end of all positions
of words found in the ontology-based explanations, A, and T . For example, in the
sentences, “We were filling out all the forms in the application. However, there is
a letter in saying loss mitigation application denied for not sending information to
us.", after the learning process, we obtain: 1) ontology-based explanation is (loss,
application); 2) anchor text is “not sending information"; and 3) triple is “a letter;
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Figure 2: Visualization of drug abuse (top) and consumer complaint (bottom) experiments.

denied; mitigation application". The semantic explanation E is “a letter in saying loss
mitigation application denied for not sending information."

• 4) If different ontology-based tuples are in different sentences in x, due to the contextual
constraint in Eq. 2, the explanation for each sentence follows the 3rd regulation.

4 Experiments

We have conducted extensive experiments on two real-world datasets, including drug abuse (Twitter-
sphere [10]) and consumer complaint analysis from Consumer Financial Protection Bureau1.

4.1 Baseline Approaches

Our OnML approach is evaluated in comparison with traditional approaches: (1) an interpretable
model-agnostic explanation, i.e., LIME [4]; and (2) information extraction, i.e., OLLIE [19]. LIME
is one of the state-of-the-art and well-applied approaches in interpretable model-agnostic explanation,
in which the predictions of any model are explained in a local region near the sample being explained.
There are other algorithms sharing the same spirit as LIME, in terms of generating explanations
[6, 20–25]. For the sake of clarity, we use LIME as a representative baseline regarding this line of
research. Meanwhile, OLLIE is a high-precision information extraction method that learns open
pattern templates over these training samples. In LIME and OLLIE, domain knowledge is not used.

4.2 Datasets and Domain Ontologies

To validate the proposed method, we have developed two different domain ontologies, which are drug
abuse ontology (Fig. 1b) and consumer complaint ontology (Appendix).

Drug abuse dataset. We will use the term “drug abuse" in the wider sense, including abuse and
use of Schedule 1 drugs that are illegal and have no medical use; and misuse of Schedule 2 drugs
(e.g., Oxycodone), which have medical uses, yet have a potential for severe addiction, and which
can be life-threatening [26]. Main concepts of the drug abuse ontology (DrugAO) (Fig. 1b) capture
correlation among key concepts, including abuse behaviors, drug types, drug sources, drug users,
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Table 1: Data statistical analysis.

Statistics
Dataset Drug abuse Consumer

complaint
# of samples 9,700 13,965
# of categories 2 16
Max # of words/sentence 37 4,893
Mean # of words/sentence 12 285

symptoms, side effects, and medical condition when using drug. In total, we have 506 drug-abuse
related terms (including slang terms and street names), and 18 relations covered in our DrugAO.

The drug abuse dataset consists of 9, 700 tweets labelled by [10] with a high agreement score. Among
them, 3, 043 tweets are drug abuse tweets, labeled positive and the rest are non drug abuse tweets,
labeled negative. The statistical analysis is in Table 1.

Consumer complaint dataset. A consumer complaint is defined, here, as a complaint about a range
of consumer financial products and services, sent to companies for response. Main concepts of
the consumer complaint ontology (ConsO) encode the relation among different entities related to
consumer complaint: for instance, who is complaining; what happened to make consumers unhappy
and then complaint; etc. These ontologies were semi-manually generated, in which concepts were
grouped and collected from the dataset by the K-means clustering algorithm [27], and then judged by
humans to reduce redundant or inappropriate concepts. In total, we have 572 finance and product-
related terms and 9 relations covered in our ontology. The consumer complaint dataset consists of
13, 965 mortgage-related complaints, labeled with 16 categories. These complaints were used for
learning a model to predict the issue regarding each complaint.

4.3 Experimental Settings

Our experiment focuses on validating whether: (1) Our OnML approach can be applied on different
agnostic predictive models; and (2) Our approach can generate better explanations, compared with
baseline approaches, in both quantitative and qualitative measures.

To achieve our goal, we carry out our evaluation through three approaches. First, by employing SVM
and LSTM, we aim to illustrate that OnML works well with different agnostic predictive models.
Second, we leverage the word deleting approach [28] as an quantitative evaluation. Third, we apply
qualitative evaluation with Amazon Mechanical Turk (AMT).

SVM and LSTM models. In the drug abuse dataset, tweets were vectorized by TF-IDF [29] and
then classified by SVM. We achieved 83.6% accuracy. Tweets are short (Table 1); i.e., the average
and maximum numbers of words in a tweet are 12 and 37. Therefore, it is not necessary to apply the
anchor learning algorithm, which is designed to tighten down the search space for long text data.

In the consumer complaint dataset, Word2vec [30] is applied for feature vectorization. Then, a Long
short-term memory (LSTM) [31] is trained as a prediction model. In LSTM, we used an embedding
input layer with d = 300, one hidden layer of 64 numbers of hidden neurons, and a softmax output
layer with 16 outputs. An efficient ADAM [32] optimization algorithm with learning rate 0.01 was
employed to train LSTM. For the prediction model, we achieved 53% accuracy. We registered that
this is a reliable performance, since the 16 categories are densely correlated resulting in a lower
prediction accuracy [33]. Another reason for the low accuracy is the limited number of samples. We
will collect more data in the future.

For sufficiently learning anchors in consumer complaints, we have chosen a set of negative terms
as user-predefined anchors A0 = {not, no, illegal, against, without}. Importance scores in LIME
are weights of the linear interpretable model. With OLLIE, importance scores of extracted triplexes
are calculated in the same way as in our method (as shown in Eq. 4). The contextual constraint γ in
Eq. 2 is 3 for drug abuse or 10 for consumer complaint dataset. The pre-defined threshold in Eq. 3
is 0.5. LIME and OLLIE settings are used as default. We only show OLLIE rules which have the
confidence score greater than 0.7 and top-5 words from LIME.

It is important to note that, to be fair, we also combined the learned anchors to the results of OLLIE.
In addition, another variation of our algorithm is to combine ontology-based terms and anchors,
called Ontology algorithm. This is further used to comprehensively evaluate our proposed approach.
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(a) AMT experiment results. (b) Average score changes in consumer complaint.

Figure 3: Qualitative and quantitative experiment results.

Table 2: AC and SC in drug abuse.

Accuracy changes (%) Score changes (%)
LIME 15.04 26.98
OLLIE 15.47 23.52
OnML 25.52 33.48

Quantitative evaluation. We use the word deleting approach [28], which deletes a sequence of
words from the text and then re-classifies the text with missing words. By the difference between the
original text and the missing text, we can examine the importance of the explanation to the prediction.

Accuracy changes (AC) and prediction score changes (SC) are as follows:

AC = Original accuracy−
∑|test|

i=1 Updating accuracy
|test|

SC =

∑|test|
i=1 IC(top-k explanations of i-th sample)

|test|
where the higher values of AC and SC indicate the more important explanations derived.

In our experiment, we deleted the top-k highest importance score explanations in OnML and OLLIE
approaches and the top-m highest weighted words in LIME. To be fair, m is the number of words in
the k-deleted explanations in OnML. In drug abuse, k = 1 since the tweet is typically short, and so
there are not many explanations generated. In consumer complaint classifying, k ∈ {1, 2, 3}.
Qualitative evaluation. We recruit human subjects on Amazon Mechanical Turk (AMT). This is a
common means of evaluation for the needs of qualitative investigation by humans [6, 34]. Detailed
guidance for each experiment is provided to users before they conduct the task.

We asked AMT workers to choose the best explanation by seeing side-by-side explanation algorithms.
On top of that, we provided the original tweet/ complaint associated with their labels and prediction
results. The visualization showing explanation results of the approaches is presented in Fig. 2. It is
important to note that, in our real experiment, to avoid bias, name of each algorithm is hidden, and
their positions in the visualization are randomized.

We were recruiting 4 users/tweets in the drug abuse and 5 users/complaints in the consumer complaint
experiment. There are two ways to quantify the voting results from AMT users: (1) Count the total
number of votes, called normal count, i.e., the best algorithm is chosen over all 1, 500 votes (5
users/complaint × 300 complaints); and (2) Count the majority number of votes, called majority
count, i.e., the best algorithm for each complaint is the algorithm of the largest number over 5 votes.

4.4 Experimental results and analysis

300 positive tweets and 300 complaints, randomly selected, were used to evaluate the interpretability
of each approach.

Drug abuse explanation. As in Table 2, the accuracy is deducted significantly, and the predictive
score changes the most in OnML. In fact, the values of AC and SC are 25.52% and 33.48% given
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OnML, compared with 15.47% and 23.52% given OLIIE, and 15.04% and 26.98% given LIME.
This demonstrates that the explanations generated by our algorithm are more significant, compared
with the ones generated by baseline approaches. In the evaluation by humans using AMT (Fig. 3a),
OnML clearly outperforms LIME and OLLIE. Text in the tweet data is generally short and can be
represented by several key words in the tweet. Therefore, individual words learned by LIME can be
sufficient to generate more insightful explanations, compared with OLLIE. Meanwhile, OLLIE tends
to extract all possible triplexes in the text, which can be redundant and wordy explanations.

Consumer complaint explanation. The results on the consumer complain dataset further strengthen
our results. Fig. 3b shows SC after deleting top-1, top-2, and top-3 explanations from OnML,
Ontology, and OLLIE, as well as after deleting the most important words in LIME. In all three cases,
score changes in OnML have the highest values, indicating that the explanations generated by OnML
are the most significant to the prediction. In the evaluation by humans using AMT (Fig. 3a), our
OnML algorithm outperforms baseline approaches. Ontology approach achieves higher results than
LIME and OLLIE. This shows the effectiveness of the ontology-based approach. LIME algorithm
does not consider semantic correlations among words/features, resulting in a poor outcome.

Completeness and concision. In Fig. 2 (top), OnML generates “i smoking weed," which provides
concise and complete information about why it is predicted as a drug abuse tweet (smoking weed)
and who was doing it (i) in a syntactic form (S-V-O). Meanwhile, 1) LIME derives relevant words
to drug abuse (i.e., weed, smoking) without considering the correlation among these words; and 2)
OLLIE generates lengthy and somewhat irrelevant explanations, e.g., “chinese food; be eating on; a
roof." In Fig. 2 (bottom), OnML derived semantic explanations for consumer complaints, which tell
us that consumers were facing issues in loan refinance, e.g., “called fha and they clain that fha dows
not review loans." Compared to OnML, Ontology generates laconic explanations, e.g., “fha loan" that
give no sense of what is going on with the loan and why consumer complaints. Meanwhile, LIME
provides a set of fragmented words and OLLIE generates wordy explanations, which are difficult to
follow. More examples of drug abuse and consumer complaint explanation are in the Appendix.

Our key observations are: (1) Combining correlated terms, anchor texts, and information extraction
can generate complete, concise, and insightful explanations to interpret the prediction model f ; and
(2) Our OnML model outperforms other baseline approaches in both the quantitative and qualitative
experiments, showing a promising result.

5 Conclusion

In this paper, we proposed a novel ontology-based IML to generate semantic explanations, by
integrating interpretable models, ontologies, and information extraction techniques. A new ontology-
based sampling technique was introduced, to encode semantic correlations among features/terms
in learning interpretable representations. An anchor learning algorithm was designed to limit the
search space of good explanations. Then, a set of regulations for connecting learned correlated terms,
anchor texts, and extracted triplexes is introduced, to produce semantic explanations. Our approach
achieves a better performance, in terms of semantic explanations, compared with baseline approaches,
illustrating a better interpretability into ML models and data. Our approach paves an early brick on a
new road towards gaining insights into machine learning using domain knowledge.
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Appendix
Domain Ontologies

Figure 4: Main concepts of a drug abuse ontology generated by our team experts.

Drug abuse behavior is defined as the use of a medication, legally (e.g. legal painkiller and weed) or
illegally (e.g. getting drugs without prescription or even from blackmarket), without a prescription,
in a way other than as prescribed, but for personal experience of getting “high" or feeling “numb."
The drug abuse ontology captures different concepts collected from drug abuse tweets, grouped
by K-means clustering algorithm, and then finalized by our team experts. Main concepts of the
drug abuse ontology (DrugAO) (Fig. 4) capture correlation among them and are related to drug
abuse. There are seven major concepts in DrugAO, which are AbuseBehaviror, Drug, Source, User,
Symptom, SideEffect, and MedicalCondition. AbuseBehavior is about behaviors of abusers, such as
abuse, addict, blunt, etc. Drug consists of different types of legal and illegal drugs, e.g., narcotics,
cocaine, and weed. Source is where User, who are the main objects of the ontology, gets drugs from.
Symptom and SideEfffect are about different negative short-term and long-term effects of drugs on
users. MedicalCondition contains terms about expression of disease and illness caused by using
drugs. In total, we have 506 drug-abuse related terms, 18 relations covered in our DrugAO.

Figure 5: Main concepts of a consumer complaint ontology generated by our team experts.

A consumer complaint is defined as a complaint about a range of consumer financial products and
services, sent to companies for response. In complaints, consumers typically talk about their mortgage-
related issues, such as: (1) Applying for a mortgage or refinancing an existing mortgage (application,
credit decision, underwriting); (2) Closing on a mortgage (closing process, confusing or missing
disclosures, cost); (3) Trouble during payment process (loan servicing, payment processing, escrow
accounts); (4) Struggling to pay mortgage (loan modification, behind on payments, foreclosure); (5)
Problem with credit report or credit score; (6) Problem with fraud alerts or security freezes, credit
monitoring or identity theft protection services; and (7) Incorrect information on consumer’s report
or improper use of consumer’s report. The consumer complaint ontology (ConsO) (Fig. 5) encodes
the relation among different entities related to consumer complaints. There are six major concepts in
ConsO, which are Thing in role, Complaint, Event, Event outcome, Property, and Product. Thing in
role is people and organizations related to Complaint, such as buyers, investors, dealers, et,. Event
and Event outcome are about negative events happened that cause consumer complaints. Property is
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things belonging to consumers and Product is substances of some parties (e.g., banks) offering to
consumers. We have 572 finance and product-related terms and 9 relations covered in our ConsO.

Additional Experimental Results

Figure 6: Visualization of a drug abuse experiment.

Figure 7: Visualization of a drug abuse experiment.

Figure 8: Visualization of a drug abuse experiment.
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Figure 9: Visualization of a drug abuse experiment.

Figure 10: Visualization of a drug abuse experiment.

Figure 11: Visualization of a consumer complaint experiment.
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Figure 12: Visualization of a consumer complaint experiment.

Figure 13: Visualization of a consumer complaint experiment.

Figure 14: Visualization of a consumer complaint experiment.
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Figure 15: Visualization of a consumer complaint experiment.
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