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Abstract

Key features of mental illnesses are reflected in speech. Our research focuses on
designing a multimodal deep learning structure that automatically extracts salient
features from recorded speech samples for predicting various mental disorders
including depression, bipolar, and schizophrenia. We adopt a variety of pre-trained
models to extract embeddings from both audio and text segments. We use several
state-of-the-art embedding techniques including XLNet, BERT, FastText, and
Doc2VecC for the text representation learning and WaveNet and VGG-ish models
for audio encoding. We also leverage huge auxiliary emotion-labeled text and
audio corpora to train emotion-specific embeddings and use transfer learning in
order to address the problem of insufficient annotated multimodal data available.
All these embeddings are then combined into a joint representation in a multimodal
fusion layer and finally a recurrent neural network is used to predict the mental
disorder. Our results show that mental disorders can be predicted with acceptable
accuracy through multimodal analysis of clinical interviews.

1 Introduction

Human brain recognizes linguistic content and emotional intent of an expressed opinion by integrating
multiple sources of information. Our communicative perception is not only obtained from verbal
analysis of what words have been delivered but also acquired by investigating additional modalities
including speech audio and visual cues of how that utterance has been expressed [2]. More importantly,
a single source of information (e.g. text-based mental mood understanding) may not be enough to
detect and handle ambiguity due to the plurality of meanings. For instance, the emotive content
conveyed by the spoken opinion "This was a different experience." may not be clear by itself while
considering the tonality, pitch, and intonation of the speaker, it can be taken as a happy or sad narrative.
This indicates the textual and audio characteristics of a statement are strongly related and learning how
to model these inherent interactions between them can resolve ambiguity to some extent. Previous
work in modeling human language often utilizes word embeddings pre-trained on a large textual
corpus to represent the meaning of language. However, these methods are not sufficient for modeling
highly dynamic human multimodal language. Therefore, to detect the mental state of the speaker, we
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Figure 1: Model architecture.

not only require to consider multiple modalities that are involving in the message conveyance but also
need to utilize adequate techniques which can learn complex interactions between those modalities.

Moreover, aspects of speech and language content can inform the diagnosis and outcome prediction
in mental disorders [13| [7]. Clinicians use these characteristics in mental state examination by
detecting key linguistic elements of their patient’s statement in addition to its acoustic cues. However,
systematic coding of speech can be laborious and there is lack of agreement about which speech
characteristics are most important for diagnostic and prognostic purposes. This motivates us to
learn an effective representation of key audio and language characteristics that can identify the
presence and severity of mental illnesses. In this paper we introduce a multimodal deep learning
structure that automatically extracts salient audio features from audio speech samples (e.g. pitch,
energy, voice probability) and linguistic cues extracted from their transcribed texts (e.g. vocabulary
richness, cohesiveness, average positive/negative sentiment score) to predict a variety of mental
disorders. We use pre-trained WaveNet model [12] and VGG-inspired acoustic model [14]] to extract
two audio feature encodings. For textual features representation learning, we use pre-trained XLNet
[25]] and BERT (Bidirectional Encoder Representations from Transformers) [9] language models,
in addition to other unsupervised word and document embeddings algorithms to learn text-based
features embeddings. Our ultimate text-based and audio-based feature representations obtained from
concatenating the learned text and audio embedding vectors. Then, we learn an optimal configuration
to combine these two heterogeneous feature sets into a joint representation in a bimodal fusion layer.
Next, we train an LSTM with attention mechanism over this multimodal fusion layer to make the
final prediction. Figure[T|shows the architecture of our multimodal framework. We demonstrate the
validity of this approach using a dataset of recorded speech samples from individuals with mental
illness.

2 Related Works

When modeling human language, it is essential to not only consider the literal meaning of the
words but also the nonverbal contexts such as vocal patterns and facial expressions in which these
words appear. With respect to the modalities interactions learning, many efforts have been done in
multimodal sentiment analysis and emotion recognition. Some earlier work introduced acoustic and
paralinguistic features to the text-based analysis for the purpose of subjectivity or sentiment analysis
[18]]. In [21]], multimodal cues including visual ones, have been used for the sentiment analysis
in product and movie reviews. Their approach directly concatenated modalities in an early fusion
representation, without studying the relations between different modalities. [28] has introduced an
opinion-level annotated corpus of sentiment and subjectivity analysis in online videos by jointly
modeling the spoken words and visual gestures. Most recently, Wang et al. [24] introduced a human
language model that learns how to modify word representations based on the fine-grained visual
and acoustic patterns that occur during word segments. They modeled the dynamic interactions



Table 1: Statistics of the data

Attribute Count Attribute Count
Total number of subjects 363 Total number of segments 17,565
Average word count in segments 17 Average length of audio segments (seconds) 6.47
Number of objective segments 7,441 Number of subjective segments 10,124
Number of segments with positive sentiment 5,761 Number of segments with negative sentiment 3,417
Number of segments with anger emotion 1,294 Number of segments with fear emotion 807
Number of segments with joy emotion 4,649 Number of segments with sadness emotion 1,150
Number of segments with neutral emotion 9,398 Number of segments with neutral sentiment 8,268
Number of cohesive segments 2,896 Number of ruminated segments 229
Number of overinclusive segments 481 Number of worry segments 1,302
Number of criticism segments 1,750

between intended meaning of a word and its accompanying nonverbal behaviors by shifting the word
representation in the embedding space.

In recent years, automatic mental depressive disorders prediction from speech samples has been
extensively studied [6, [1]. It has been shown that verbal interaction reduction and monotonous voice
sound are indicative of depression [13]. Moreover, there is a perceptible acoustic change in the pitch,
speaking rate, loudness, and articulation of depressed patients before and after treatment [[7]. Moore
et al. [20] have been explored the emotional content of speech (i.e. vocal affect) and its relationship
with the overall mental mood of the patient. While previous works have been successful with respect
to accuracy metrics, they have not created new insights on how the fusion is performed in terms of
what modalities are related and how modalities engage in an interaction during fusion. Zadeh et
al. [26} 28] proposed a Graph Memory Fusion Network(Graph-MFN) model that considers every
combination of modalities as vertices inside a graph and calculates the efficacies of the connections
between different nodes to learn the best fusion mechanism for modalities in multimodal language.

3 Dataset

The data consists of audio speech samples from 363 subjects participating in the Families Overcoming
Risks and Building Opportunities for Well Being (FORBOW) research project. Participants are
parents (261 mothers and 102 fathers) in the age range of 28-51 years. In these clinical interviews,
parents were asked to talk about their children for five minutes without interruption. These 363
speech samples belong to 222 unique individuals from 180 unique families. Out of these subjects,
149 were diagnosed with Major Depressive Disorder (MDD), 66 with Bipolarity Disorder (BD), 19
with Schizophrenia, and 129 were the control group with no major mood disorders.

We transcribed these audio files using Google Cloud Speech API and after extracting the text, we
broke down each sample into multiple segments based on changes in emotion, sentiment, objectiv-
ity/subjectivity, etc. which resulted in 17,565 segments. A segment has been coded as subjective if it
includes expression of opinion, beliefs, or personal thoughts of the speaker. In contrary, if the segment
consists of facts or observations of the speaker, it has been coded as objective. Four basic emotions are
considered in this analysis including anger, fear, joy, and sadness. Six multidisciplinary researchers
rated each segment for sentiment, objectivity/subjectivity, emotion (anger, fear, joy, sadness, neutral),
cohesion, rumination, over-inclusiveness, worry, and criticism. 5,818 segments were rated by two or
more researchers and the intraclass correlation for ratings of different researchers was high showing
strong agreement in the labeling. In addition to the segment-level labeling, they also rated affect,
warmth, overprotection, cohesion, and criticism at the document-level (i.e. for each audio sample).
Document-level assessments are provided as nominal ratings between 1 and 5. Table[T|shows the
basic statistics of the data and the segment-level labels. Figure 2] illustrates the heatmaps of ratings
for segment-level and document-level labels.

4 Proposed Method

To address multilateral dynamic of human language as well as automatic extraction of the most
salient speech characteristics, we propose a multimodal deep learning algorithm for automatic
clinical speech samples analysis that effectively learns a non-linear combination between textual and
acoustic modalities using an attention gating mechanism. In multimodal dynamics, we first build a
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Figure 3: Our model prediction for emotional content of every segment in a randomly selected speech
sample. The picture shows how the sentiment and emotions changes for each segment during the 5
minute interview. White areas are associated with neutral emotion. This subject has been diagnosed
with bipolar disorder.

model for each modality independently with its own structure. We have a sequence of observations
and we want to do inference in a sequential supervised learning manner. Then, to learn a joint
representation of audio and text, we need to adopt an efficient fusion strategy to map these two
sets of heterogeneous features into a common space. We analyze every modality in fine-grained
(i.e. segment-level) and coarse-grained (i.e. document-level) and combine the textual and acoustic
learned feature representations in two levels. The key insight to our model is that depending on the
encoded information in textual and acoustic modalities, the relative importance of their associated
learned embeddings may differ in the bimodal feature fusion layer. Here, our unimodal representation
learning algorithms for audio and text features extraction are discussed separately.

4.1 Textual Features Representation Learning

Our textual features representation learning module has two major components: 1) segment-level
features extraction to learn fine-grained textual embeddings for every segment, and 2) emotion-specific
representation of text segment which extracts emotion information contained in every segment. These



two textual feature embeddings are then concatenated to create our ultimate segment-level text
features representation.

After learning segment-level textual features representation, we feed this sequence of segment
embeddings to another recurrent network (i.e. LSTM) with an attention gating mechanism and train
it to make the final prediction of mental disorders. Moreover, we consider the learned representation
of the last dense layer of this LSTM network as a document-level representation of every transcribed
speech sample. The attention vector values demonstrate the relative importances of the segments
in a document regarding the mental disorders prediction task. Then, we train different classifiers
including Random Forest (RF), Support Vector Machines (SVM), k Nearest Neighbors (KNN), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Naive Bayes over this
coarse-grained encoding of textual features to predict mental disorders. We refer to this layer as our
unimodal text representation layer. The following subsections discuss the details of the above two
components of our segment-level textual features representation learning module.

4.1.1 Segment-level Textual Feature Extraction

To extract segment-level textual features, we use two pre-trained language models: 1) BERT language
model [9] which is basically a multi-layer bidirectional LSTM networks trained with attention mech-
anism to learn text-based features embeddings. 2) XLNet [25] which is a generalized autoregressive
model that captures longer-term dependency. More specifically, XLLNet maximizes the expected log
likelihood of a sequence w.r.t. all possible permutations of the factorization order and so does not
suffer from BERT pretrain-finetune discrepancy. After learning BERT (or XLNet) representation
of every token in the text segment, we take the average of learned representations to obtain the
representation associated with the whole segment. However, since language models provides us
with context-dependent word embeddings, we also employ a pre-trained FastText model [3], trained
on Wikipedia, to learn another distributed word representations for every token in the text segment.
FastText model incorporates subword information and considers character ngrams. Hence, it can learn
the compositional representations from subwords to words which allows it to infer representations for
words do not exist in the training vocabulary. Similar to BERT and XLNet segment representations,
we take average of the learned FastText word embeddings of all the tokens in a segment to achieve
FastText segment representation.

Moreover, to make sure our learned segment-level representation contains the most distinctive
linguistic content of the clinical interviews - as there is an strong association between some mental
disorders and patients’ use of words, we apply a pre-trained Document Vector through Corruption
(Doc2VecC) model [S] to learn segment-level text features representation of every segment in the
transcribed speech sample. Doc2VecC captures the semantic meaning of the document by focusing
more on informative or rare words while forcing the embeddings of common and non-discriminative
words to be close to zero. We pre-train our Doc2VecC model on a large corpus of 21M tweets data.
Then, we concatenate BERT (or XLNet), fastText, and Doc2VecC segment embeddings to obtain the
first part of our segment-level text features representation. We use the embeddings dimensionality of
d={1024, 100, 100} for BERT (or XLNet), fastText, and Doc2VecC models, respectively.

4.1.2 Emotion-specific Representation of Text Segment

Additionally, to incorporate the emotion information contained in text data, we train an LSTM
network for emotion recognition using an auxiliary annotated dataset and learn the emotion-specific
representation of every segment using the transfer learning framework [23]. We use SemEval-2018
AIT DIstant Supervision Corpus (DISC) of tweets [19] which includes around 100M English tweet
ids associated with tweets that contain emotion-related query terms such as ‘#angry’, ‘annoyed’,
‘panic’, ‘happy’, ’elated’, ’surprised’, etc. We collected 21M tweets by polling the Twitter API with
these tweet ids and fed them into the LSTM network to predict their emotion labels. The output
emotion is the label of the class with the highest probability among the four basic emotions of anger,
fear, joy, and sadness. Next, we freeze the LSTM network and remove its softmax output layer. Then,
we feed our sequence of segment embeddings learned by pre-trained fastText model and consider the
learned representation of the last dense layer of the network as an emotion-specific representation of
the input text segment.



She's very honest. She's generous. She has lots of talents.

She likes to bake

and she's very artistic, very respectful.

[ Tcompleted grade 12 last year.

What we're having our struggles right now with her trying to find a job.
A lot of it is because of mental illness.

So we're struggling with that.

Yeah, I've had a lot of struggles withC_____].

And | just take it day by day.

Mhm.

[ has a wonderful love of animals.

And——Jreceives a lot of relaxation and peace through animals.
And she gets along fairly well with her sisters.

They do have their squabbles but for the most part they do get along.
Is there, how much time is left?

Figure 4: A random sample from subjects with depression. Each line shows a segment and they are
colored based on the attention weights learned in our attention-based LSTM model. Darker colors
mean the model is paying more attention to those segments for the final recognition (patient’s name
is replaced with blank for anonymity).

4.2 Audio Features Representation Learning

Our audio features representation learning module shares quite a similar structure with our textual
feature extraction one. There are two major components in our audio feature extraction module:
1) segment-level acoustic features extraction to learn audio embeddings for every segment, and 2)
emotion-specific representation of audio segment which extracts vocal affect information contained
in every segment. These two set of audio feature embeddings are then concatenated to create our
ultimate segment-level audio features representation. To obtain the document-level audio features
representation, we need to reduce the dimensionality of the extracted time-domain and frequency-
domain audio features for each segment. Therefore, we train an LSTM classifier using our 12
segment-level labels (i.e. subjectivity/objectivity, sentiment, emotions, cohesion, rumination, over-
inclusiveness, worry, and criticism) to get the audio segment encoding in the lower dimension.
Then, similar to our text unimodal representation learning algorithm, we feed this sequence of low-
dimensional audio segment encodings to another recurrent network to predict the mental disorders.
We consider the learned representation of the last dense layer of this LSTM network as our audio
document-level features representation and train different classifiers over it. We refer to this layer as
our unimodal audio features representation layer and train the same classifiers have been used in our
text unimodal analysis over this layer to predict mental disorders.

4.2.1 Segment-level Audio Feature Extraction

For segment-level audio features representation learning, we first use a pre-trained WaveNet autoen-
coder model [12] which basically is a neural audio synthesis network. The input audio signal is
encoded to the 16 channel embedding by a deep autoregressive dilated convolutions neural network.
Then, a similar decoder is trained to invert the encoding process and reconstruct the input audio
signal from the learned 16 channel embedding. We feed the sequence of our audio segments to the
pre-trained WaveNet model and take the 16 channel encoding as the learned audio segment features
representation. Secondly, we employ a pre-trained VGG-inspired acoustic model [[14] as another
audio feature extractor. This VGG-like network learns a 128-dimensional embedding from Mel
spectrogram of the input audio segment. We take the encoding representation obtained from training
this VGG-like network over the spectrogram features of every sound frame. We also extract eight



time-domain audio features from each frame such as pitch, energy, Normalized Amplitude Quo-
tient (NAQ), peak slope. Regarding the frequency-domain analysis, we extract 272 Mel-Frequency
Cepstral Coefficients (MFCC) in addition to their statistics (e.g. mean, standard deviation, range,
skewness, and Kurtosis) for each audio segment. The first part of our segment-level audio features
representation is then obtained by concatenating the two audio segment embeddings learned by
WaveNet and VGG-like models in addition to the traditional audio features that have been extracted
from every audio segment.

4.2.2 Emotion-specific Representation of Audio Segment

To incorporate the emotion information contained in the audio segment into our audio feature
representation learning, similar to our text modality feature extraction analysis, we use transfer
learning. First, we use the COVAREDP software [8] to extract acoustic features including 12 Mel-
frequency cepstral coefficients, pitch, voiced/unvoiced segmenting features, glottal source parameters
[LO]], peak slope parameters and maxima dispersion quotients [[L6] for audio speech samples. All
extracted features are related to emotions and tone of speech. Next, we train an LSTM model on an
auxiliary dataset for emotion recognition task. We train our model on CMU Multimodal Opinion
Sentiment and Emotion Intensity (CMU-MOSEI) dataset [28},27]. CMU-MOSEI contains 23,453
annotated video segments from 1,000 distinct speakers and 250 topics. Each video segment contains
manual transcription aligned with audio to phoneme level. Every segment has been annotated for
Ekman emotions [[11]] of {happiness, sadness, anger, fear, disgust, surprise}. However, we only
include the audio segments that have been labeled for four basic emotions {happiness, sadness, anger,
fear} to match our speech samples emotion annotation. Then, we freeze the model and remove
its softmax output layer and feed the COVAREP features associated with each audio segment to
this pre-trained model. We use our audio segments’ labels to fine-tune the pre-trained model and
take the learned representation of the last dense layer of the LSTM network as the emotion-specific
COVAREP-based feature representation of the audio segment.

Secondly, we learned emotion-specific features representation for audio segments based on their
spectrograms. We extract the spectrogram features of every audio segment and feed it as an input to
a Convolutional Neural Network (CNN) plus LSTM model to predict the segment’s emotion. By
applying 2D-Convolutional layer on spectrogram, we learn the most distinctive spatial and temporal
audio features. We use our emotion labels to train this CNN plus LSTM model and take the learned
representation of the last dense layer of the network as the emotion-specific spectrogram-based
feature representation of the audio segment. Then, we concatenate the two COVAREP-based and
spectrogram-based emotion-specific audio segment representations to obtain the emotion-specific
audio features representation for every segment.

4.3 Multimodal Fusion Learning

After learning features representation for each modality, we adopt two different feature-level fusion
strategies: (1) document-level fusion which combines the two document-level feature representations
of audio and text in one multimodal layer as a feature representation of the entire speech sample, and
(2) segment-level fusion which concatenates the text and audio representations of each segment and
outputs the bimodal segment-level feature representation for every segment.

4.3.1 Document-level Fusion

In document-level fusion, we fuse the two heterogeneous document-level feature sets of text and
audio into a joint representation in a bimodal fusion layer. Moreover, we train an LSTM with attention
gating mechanism over this multimodal fusion layer of audio-textual learned representation. The
attention layer learns to assign different weights to language and audio embeddings depending on
the information encoded in the words that are being uttered and acoustic modalities. Eventually, we
train a sigmoid output layer on top of this weighted bimodal fusion layer to make the final prediction.
Additionally, similar to the unimodal analysis we take the representation of the last hidden layer and
train a variety of classifiers to predict the final label. To formulate a segment of speech sample, we
have the sequence of uttered words in language modality L") = [lgz), léz), ey lg)} accompanying by
the sequence of audio frames in acoustic modality A(*) = [agl), a(;), e 7a§?‘} where 7 denotes the
span of the ith segment. To model the temporal sequences of textual and audio information coming



Table 2: Accuracy (%) of mental disorder recognition for our unimodal and multimodal systems
over 5-fold cross-validation. The text results correspond to the XL Net language model since XLNet
outperformed BERT in our experiments.

Control Depression Bipolar Schizophrenia
Text Audio Multi | Text Audio Multi | Text Audio Multi | Text Audio Multi
LSTM 70.7 67.52 67.52|65.62 5833 54.17|55.56 54.32 55.56|67.39 63.04 63.04
RF 71.97 67.52 77.07|66.67 60.42 71.88|5556 49.38 71.6 |69.57 58.7 63.04
SVM 7197 67.52 70.7 |64.58 5833 54.17|53.09 48.15 60.49|65.22 56.52 58.7
KNN 70.06 54.78 76.43|61.46 5729 64.58|55.56 54.32 6543|71.74 71.74 7391
LDA 73.25 68.79 70.7 |72.92 56.25 56.25]60.49 50.62 6543|7391 58.7 69.57
NB 71.97 78.98 78.98|64.58 63.54 60.42|53.09 5432 62.96|69.57 58.7 71.74
tf-idf+SVM | 56.42 - - 5474 - - |57.59 - - 65.1 - -
BOW+SVM | 55.98 - - 5230 - - |56.47 - - 62.29 - -

from each modality and compute the joint embeddings, we use an LSTM networks. LSTMs have
been successfully used in modeling temporal data in both natural language processing (NLP) and
acoustic signal processing [[15]. We apply two LSTMs separately for each modality:

W = LSTM(LD), he® = LSTM,(AD) (1)

where hl(’) and ha(l) refer to the final states of the language and acoustic LSTMs that we call
document-level feature representation (or LSTM embedding) of text and audio modalities. We then
combine these two LSTM embeddings using an attention gating mechanism to model the relative
importance of every segment in each modality.

w® = (Wil + b)), we® = 0 (Whalha™] + ba) @)

where w; (Y and w,® are the language and acoustic gates, respectively. W;,; and W), are weight
vectors for the language and acoustic gates and b; and b, are scalar biases.The sigmoid function
o(x) is defined as o (x) = 1-&-%’ x € R. Then, we calculate the bimodal fusion layer by fusing the
language and acoustic embeddings multiplied by their corresponding gates.

hla(i) = wl(z)(VVlhl(l)) + wa(i)-(Waha(i)) + bla(i) (3)

where W; and W, are weight matrices for the language and acoustic embeddings and by, is the bias.

4.3.2 Segment-level Fusion

In segment-level fusion, we first combine the feature representations of text and audio modalities for
each segment and then train one mutual LSTM network over this sequence of multimodal feature
embedding.

h = LSTM([LW; A®)) (4)

where [;] denotes the operation of vector concatenation and h(?) refers to the final state of the LSTM.
Then, we apply an attention gate on top of the LSTM embedding. The attention layer learns to assign
greater weights to more discriminative segments and hence improves our prediction accuracy.

w® = (Wi [h D] +b), R = wD (WhD) 4 b, (5)

where W}, is the weight vector for the attention gate, b is a scalar bias, w(?) is the attention gate, Wh
is a weight matrix for the bimodal segment embeddings, and b, is the bias vector.

5 Experiments

In this section, we present and analyze the results of our unimodal and multimodal mental disorder
recognition systems. We have trained and validated the models using 5-fold cross-validation. Very
often in the data we have different recordings from the same parent talking about their different
children. Moreover, there are cases where we have recordings from both parents from the same family
speaking about the same child. It has been shown that family history is strongly correlated with the
development of several mental disorders [17]. Therefore, we take this information into account while
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splitting the data into different folds. More specifically, we group all the speakers with the same
family ID together and use that data either in train or test portion for the folds. This helps us to keep
the correlated data points together and makes our training and test sets as independent as possible.

Additionally, our data has imbalance distribution in different categories of mental disorders (Control:
129, Depression: 149, Bipolar: 66, Schizophrenia: 19). To address this problem, we use random
oversampling [4] technique and duplicate the randomly selected samples from our two minority
classes (i.e. Bipolar and Schizophrenia) and augment them into our data set. Figure |3|illustrates
sentiment and mood changes during a five-minute interview for a randomly selected subject with
bipolar disorder. The colored vertical bars shows the ground-truth emotion labels in the dataset and
the colored text segments above the figure show our model’s predicted emotions that match the true
emotions. Since there are more than 50 segments in the audio file, we randomly sampled 2 segments
from each emotion for the sake of readability of the figure. Figure @] shows a sample speech from the
depression group. Each line represents a segment and the segments are colored based on the attention
weights learned in our multimodal attention-based RNN. As we can see from the figure, the segments
where the parent talks about the anxiety level of their kids and their communication problems have
higher weights showing that the network is paying more attention to those segments.

Table [2] shows the correct classification rate or accuracy of recognition for different mental disorders.
The control columns in the table are the accuracies of predicting control group against any other
disorder. As we can see from the table, the proposed multimodal architecture has better accuracy
than the unimodal systems in most cases. We have achieved an accuracy of 74.35% on average for
predicting different mental disorders. As we expected the contextualized word features from the
XLNet and BERT language models are more reliable than traditional feature extraction methods such
as bag-of-words (BOW). Figure [5|illustrates the Receiver Operating Characteristic (ROC) diagrams
of unimodal and multimodal systems for Depression, Bipolar, and Schizophrenia classes. As we can
see from the figure, the multimodal architecture has better ROC curve and consequently higher Area
Under the Curve (AUC). The AUC score of 0.751 for Schizophrenia which was the most imbalanced
class with only 13 positive samples shows the ability of our model in handling imbalanced data.

6 Conclusions & Future Works

Automated classification with multimodal deep learning adds scalability to the use of speech in
the prediction of mental health outcomes. In this research, we propose a multimodal deep learning
framework for automatic mental disorders prediction. Our results show that mental disorders can
be predicted automatically through multimodal analysis of speech samples and language contents
extracted from clinical interviews. Using weighted feature concatenation fusion algorithm has
achieved the average accuracy of 74.35% (RF trained on learned document representations of two-
level LSTMs). The average AUC of 70.5% for RF, over 5-fold cross-validation, indicates that our
model could have successfully handled the imbalance dataset. Future steps include investigating
offspring’s recorded audio samples alongside their parents’ speech samples since family history has a
great impact on most of the major mental disorders occurrences. Moreover, we would like to improve
our mental mood prediction analysis by incorporating clinical narrative summary for every subject.
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