
Can Graph Neural Networks Help Logic Reasoning?

Yuyu Zhang∗, Xinshi Chen∗, Yuan Yang∗, Arun Ramamurthy†, Bo Li‡, Yuan Qi�, Le Song∗�
∗Georgia Tech, †Siemens, ‡UIUC, �Ant Financial

Abstract

Effectively combining logic reasoning and probabilistic inference has been a long-
standing goal of machine learning: the former has the ability to generalize with
small training data, while the latter provides a principled framework for dealing
with noisy data. However, existing methods for combining the best of both worlds
are typically computationally intensive. In this paper, we focus on Markov Logic
Networks and explore the use of graph neural networks (GNNs) for representing
probabilistic logic inference. It is revealed from our analysis that the representation
power of GNN alone is not enough for such a task. We instead propose a more
expressive variant, called ExpressGNN, which can perform effective probabilistic
logic inference while being able to scale to a large number of entities. We demon-
strate by several benchmark datasets that ExpressGNN has the potential to advance
probabilistic logic reasoning to the next stage.

1 Introduction

An elegant framework of combining logic reasoning and probabilistic inference is Markov Logic
Network (MLN) [1], where logic predicates are treated as random variables and logic formulae are
used to define the potential functions. It has greatly extended the ability of logic reasoning to handle
noisy facts and partially correct logic formulae common in real-world problems. Furthermore, MLN
enables probabilistic graphical models to exploit prior knowledge and learn in the region of small or
zero training samples. This second aspect is important in the context of lifelong learning and massive
multitask learning, where most prediction targets have insufficient number of labeled data.

F(A,C)
=1

S(A)
=1

F(A,D)
=1

A C D

F(A,C)
=1

S(A)
=1

F(A,D)
=1

F(C,D)
=?

S(C)
=?

S(D)
=?

𝑓(A,C) 𝑓(A,D) 𝑓(C,D)

MLN

𝓖𝓚

1 11 2 2

Figure 1: Bottom: A knowledge
base as a factor graph. {A,C,D}
are entities, and F (Friend) and S
(Smoke) are predicates. Top: Markov
Logic Network (MLN) with formula
f(c, c′) := ¬S(c)∨¬F(c, c′)∨S(c′).

However, a central challenge is that probabilistic inference in
MLN is computationally intensive. It contains O(Mn) many
random variables if there are M entities and the involved predi-
cate has n arguments. Approximate inference techniques such as
MCMC and belief propagation have been proposed, but the large
MLN makes them barely scalable to hundreds of entities.

Graph neural network (GNN) is a popular tool of learning repre-
sentation for graph data, including but not limited to social net-
works, molecular graphs, and knowledge graphs [2, 3, 4, 5, 6, 7].
It is natural to think that GNNs have the potential to improve the
effectiveness of probabilistic logic inference in MLN. However,
it is not clear why and how exactly GNNs may help.

In this paper, we explore the use of GNN for scalable probabilistic
logic inference in MLN, and provide an affirmative answer on
how to do that. In our method, GNN is applied to knowledge
bases which can be orders of magnitude smaller than grounded
MLN; and then GNN embeddings are used to define mean field
distributions in probabilistic logic inference. However, our analysis reveals that GNN embeddings
alone will lead to inconsistent parametrization due to the additional asymmetry created by logic
Preprint. Under review.

formulae. Motivated by this analysis, we propose a more expressive variant, called ExpressGNN,
which consists of (1) an inductive GNN embedding component for learning representation from
knowledge bases; (2) and a transductive and tunable embedding component for compensating the
asymmetry created by logic formulae in MLN.

We show by experiments that mean field approximation with ExpressGNN enables efficient and
effective probabilistic logic inference in modern knowledge bases. Furthermore, ExpressGNN can
achieve these results with far fewer parameters than purely transductive embeddings, and yet it has
the ability to adapt and generalize to new knowledge graphs.

Related work. Previous probabilistic logic inference techniques either use sampling methods or
belief propagation. More advanced variants have been proposed to make use of symmetries in
MLNs to reduce computation (e.g., the lifted inference algorithms [8, 9]). However, these inference
methods still barely scale to hundreds of entities. We describe specific methods and compare their
performances in Section 7. A recent seminal work explored the use of GNN for relation prediction,
but the additional challenges from logic formula are not considered [10].

2 Knowledge Bases and Markov Logic Networks

Knowledge base. Typically, a knowledge base K consists of a tuple K = (C,R,O), with a set
C = {c1, . . . , cM} of M entities, a set R = {r1, . . . , rN} of N relations, and a collection O =
{o1, . . . , oL} of L observed facts. In the language of first-order logic, entities are also called constants.
For instance, a constant can be a person or an object. Relations are also called predicates. Each
predicate is a logic function defined over C, i.e., r(·) : C×. . .×C 7→ {0, 1} . In general, the arguments
of predicates are asymmetric. For instance, for the predicate r(c, c′) := L(c, c′) (L for Like) which
checks whether c likes c′, the arguments c and c′ are not exchangeable.

With a particular set of entities assigned to the arguments, the predicate is called a grounded predicate,
and each grounded predicate ≡ a binary random variable, which will be used to define MLN.
For a d-ary predicate, there are Md ways to ground it. We denote an assignment as ar. For instance,
with ar = (c, c′), we can simply write a grounded predicate r(c, c′) as r(ar). Each observed fact in
knowledge bases is a truth value {0, 1} assigned to a grounded predicate. For instance, a fact o can
be [L(c, c′) = 1]. The number of observed facts is typically much smaller than that of unobserved
facts. We adopt the open-world paradigm and treat these unobserved facts ≡ latent variables.

As a more clear representation, we express a knowledge base K by a bipartite graph GK = (C,O, E),
where nodes on one side of the graph correspond to constants C and nodes on the other side correspond
to observed factsO, which is called factor in this case (Fig.1). The set of T edges, E = {e1, . . . , eT },
will connect constants and the observed facts. More specifically, an edge

e = (c, o, i) between node c and o exists, if the grounded predicate associated with
o uses c as an argument in its i-th argument position. (See Fig. 1 for an illustration.)

Markov Logic Networks. MLNs use logic formulae to define potential functions in undirected
graphical models. A logic formula f(·) : C × . . .× C 7→ {0, 1} is a binary function defined via the
composition of a few predicates. For instance, a logic formula f(c, c′) can be
Smoke(c) ∧ Friend(c, c′)⇒ Smoke(c′) ⇐⇒ ¬Smoke(c) ∨ ¬Friend(c, c′) ∨ Smoke(c′),

where ¬ is negation and the equivalence is established by De Morgan’s law. Similar to predicates, we
denote an assignment of constants to the arguments of a formula f as af , and the entire collection of
consistent assignments of constants as Af = {a1f , a2f , . . .}. Given these logic representations, MLN
can be defined as a joint distribution over all observed facts O and unobserved factsH as (Fig. 1)

P (O,H) := 1
Z exp

(∑
f∈F wf

∑
af∈Af

φf (af)
)
, (1)

where Z is a normalizing constant summing over all grounded predicates and φf (·) is the potential
function defined by a formula f . One form of φf (·) can simply be the truth value of the logic formula
f . For instance, if the formula is f(c, c′) := ¬S(c) ∨ ¬F(c, c′) ∨ S(c′), then φf (c, c′) can simply
take value 1 when f(c, c′) is true and 0 otherwise. Other more sophisticated φf can also be designed,
which have the potential to take into account complex entities, such as images or texts, but will not
be the focus of this paper. The weight wf can be viewed as the confidence score of formulae f : the
higher the weight, the more accurate the formula is.

2

3 Challenges for Inference in Markov Logic Networks

Inference in Markov Logic Networks can be very computationally intensive, since the inference
needs to be carried out in the fully grounded network involving all grounded variables and formula
nodes. Most previous inference methods barely scale to hundreds of entities.

Mean field approximation. We will focus on mean field approximation, since it has been demon-
strated to scale up to many large graphical models, such as latent Dirichlet allocation for modeling
topics from large text corpus [10, 11]. In this case, the conditional distribution P (H|O) is approxi-
mated by a product distribution, P (H|O) ≈

∏
r(ar)∈HQ

∗(r(ar)). The set of mean field distributions
Q∗(r(ar)) can be determined by KL-divergence minimization

{Q∗(r(ar))} = argmin{Q(r(ar))} KL
(∏

r(ar)∈HQ(r(ar)) ‖ P (H|O)
)

(2)

= argmin{Q(r(ar))}
∑

r(ar)∈H E[lnQ(r(ar))]−
∑

f∈F wf

∑
af∈Af

E[φf (af)|O],

where E[φf (af)|O] means that observed predicates in O are fixed to their actual values with proba-
bility 1. For instance, a grounded formula f(A,B) = ¬S(A) ∨ ¬F(A,B) ∨ S(B) with observations
S(A) = 1 and F(A,B) = 1 will result in E[φf (af)|O] =

∑
S(B)={0,1}Q(S(B))(¬1 ∨ ¬1 ∨ S(B)).

In theory, one can use mean field iteration to obtain the optimal Q∗(r(ar)), but due to the large
number of nodes in the grounded network, this iterative algorithm can be very inefficient.

Thus, we need to carefully think about how to parametrize the set of Q(r(ar)), such that the
parametrization is expressive enough for representing posterior distributions, while at the same time
leading to efficient algorithms. Some common choices are

• Naive parametrization. Assign each Q(r(ar)) a parameter qr(ar)∈ [0, 1]. Such parametrization
is very expressive, but the number of parameters is the same as MLN size O(Mn).

• Tunable embedding parametrization. Assign each entity c a vector embedding µc ∈ Rd, and
define Q(r(ar)) using involved entities. For instance, Q(r(c, c′)) := logistic

(
MLPr(µc, µ

′
c)
)

where MLPr is a neural network specific to predicate r and logistic(·) is the standard logistic
function. The number parameters in such scheme is linear in the number of entities, O(d|C|), but
very high dimensional embedding µc may be needed to express the posteriors.

Algorithm 1: GNN and Color Refinement
Function GNN(GK = (C,O, E)):

Initialize entity node: µ(0)
c = µC , ∀c ∈ C

Fact node: µ(0)
o = µr,∀o ≡ [r(ar) = v]

. nodes of the same type are initialized with a
uniform color

For t = 0 to T − 1 do
Compute message ∀(c, o, i) ∈ E :
m

(t+1)
o→c = MLP1,i,v(µ

(t)
o , µ

(t)
c)

m
(t+1)
c→o = MLP2,i,v(µ

(t)
c , µ

(t)
o)

Aggregate message ∀c ∈ C, o ∈ O:
m

(t+1)
c = AGG1({m(t+1)

o→c }o∈N (c))

m
(t+1)
o = AGG2({m(t+1)

c→o }c∈N (o))
. aggregate colors of neighborhoods
Update embeddings ∀c ∈ C, o ∈ O:
µ
(t+1)
c = MLP3(µ

(t)
c ,m

(t+1)
c)

µ
(t+1)
o = MLP4(µ

(t)
o ,m

(t+1)
o)

. hash colors of nodes and their neighbor-
-hoods into unique new colors

return node embeddings {µ(T)
c } and {µ(T)

o }

Note that both schemes are transductive, and the
learned qr(ar) or µc can only be used for the training
graph, but can not be used for new entities or different
but related knowledge graphs (inductive setting).

Stochastic inference. The objective in equation 2
contains an expensive summation, making its evalu-
ation and optimization inefficient. For instance, for
formula f(c, c′) := ¬S(c) ∨ ¬F(c, c′) ∨ S(c′), the
number of terms involved in

∑
af∈Af

will be square
in the number of entities. Thus, we approximate the
objective function with stochastic sampling, and then
optimize the parameters in Q(r(ar)) via stochastic
gradients, and various strategies can be used to reduce
the variance of the stochastic gradients [10, 11].

4 Graph Neural Network for Inference
To efficiently parametrize the entity embeddings with
less parameters than tunable embeddings, we propose
to use a GNN on the knowledge graph GK, much
smaller than the fully grounded MLN (Figure 1), to
generate embeddings µc of each entity c, and then
use these embeddings to define mean field distribu-
tions. The advantage of GNN is that the number of
parameters can be independent of the number of entities. Any entity embedding µc can be reproduced
by running GNN iterations online. Thus, GNN based parametrization can potentially be very memory
efficient, making it possible to scale up to a large number of entities. Furthermore, the learned GNN
parameters can be used for both transductive and inductive settings.

3

The architecture of GNN over a knowledge graph GK is given in Algorithm 1, where the multilayer
neural networks MLP1,i,v and MLP2,i,v take values v of observed facts and argument positions i into
account, MLP3 and MLP4 are standard multilayer neural networks, and AGG1 and AGG2 are typically sum
pooling functions. These embedding updates are carried out for a finite T times. In general, the more
iterations are carried out, the larger the graph neighborhood around a node will be integrated into the
representation. For simplicity of notation, we use use {µc} and {µo} to refer to the final embeddings
{µ(T)

c } and {µ(T)
o }. Then these embeddings are used to define the mean field distributions. For

instance, if a predicate r(c, c′) involves two entities c and c′, Q(r(c, c′)) can be defined as
Q(r(c, c′)) = logistic (MLPr (µc, µc′)) , where {µc, µo} = GNN(GK) (3)

and MLPr are predicate specific multilayer neural networks. For d dimensional embeddings, the
number of parameters in GNN model is typically O(d2), independent of the number of entities.

5 Is GNN Expressive Enough?
Now a central question is: is GNN parametrization using the knowledge graph GK expressive
enough? Or will there be situations where two random variables r(c, c′′) and r(c′, c′′) have different
distributions in MLN but Q(r(c, c′′)) and Q(r(c′, c′′)) are forced to be the same due to the above
characteristic of GNN embeddings? The question arises since the knowledge graph GK is different
from the fully grounded MLN (Figure 1). We will use two theorems (proofs are all given in
Appendix A) to analyze whether GNN is expressive enough. Our main results can be summarized as:

(1) Without formulae tying together the predicates, GNN embeddings are expressive enough for
feature representations of latent facts in the knowledge base.
(2) With formulae in MLN modeling the dependency between predicates, GNN embedding becomes
insufficient for posterior parametrization.

These theoretical anlayses motivate a more expressive variant, called ExpressiveGNN in Section 6, to
compensate for the insufficient representaiton power of GNN for posterior parametrization.

5.1 Property of GNN
Recent research shows that GNNs can learn to perform approximate graph isomorphism check [4, 12].
In our case, graph isomorphism of knowledge graphs is defined as follows.
Definition 5.1 (Graph Isomorphism). An isomorphism of graphs GK = (C,O, E) and GK′ =
(C′,O′, E ′) is a bijection between the nodes π : C ∪ O → C′ ∪ O′ such that (1) ∀o ∈ O,
NodeType (o) = NodeType (π(o)); (2) c and o are adjacent in GK if and only if π(c) and π(o)
are adjacent in GK′ and EdgeType (c, o) = EdgeType (π(c), π(o)).
In this definition, NodeType is determined by the associated predicate of a fact, i.e., NodeType(o ≡
[r(ar) = v]) = r. EdgeType is determined by the observed value and argument position, i.e.,
EdgeType ((c, o ≡ [r(ar) = v], i)) = (v, i). Our GNN architecture in Algorithm 1 is adapted to
these graph topology specifications. More precisely, the initial node embeddings correspond to
NodeTypes and different MLPs are used for different EdgeTypes.

It has been proved that GNNs with injections acting on neighborhood features can be as powerful as
1-dimensional Weisfeiler-Lehman graph isomorphism test [13, 12], also known as color refinement.
The color refinement procedure is given in Algorithm 1 by red texts, which is analogous to updates of
GNN embeddings. We use it to define indistinguishable nodes.
Definition 5.2 (Indistinguishable Nodes). Two nodes c, c′ in a graph G are indistinguishable if they
have the same color after the color refinement procedure terminates and no further refinement of the
node color classes is possible. In this paper, we use the following notation:

(c1, · · · , cn)
G←→ (c′1, · · · , c′n) : for each i ∈ [n], ci and c′i are indistinguishable in G.

While GNN has the ability to do color refinement, it is at most as powerful as color refinement [12].
Therefore, if c G←→ c′, their final GNN embeddings will be the same, i.e., µc = µ′c. When we use
GNN embeddings to define Q as in equation 3, it implies that Q(r(c, c′′)) = Q(r(c′, c′′)),∀c′′ ∈ C.

5.2 GNN is expressive for feature representations in knowledge bases
GNN embeddings are computed based on knowledge bases K = (C,R,O) involving only observed
facts O, but the resulting entity embeddings {µc} will be used to represent a much larger set of
unobserved factsH. In this section, we will show that, when formulae are not considered, these entity
embeddings {µc} are expressive enough for representing the latent factsH.

4

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

B 𝜇" C 𝜇#

𝓖𝒦
A 𝜇& D 𝜇'

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C)
= ?

F(B,D)
= ?

F(C,D)
= ?

S(C)
= ?

S(D)
= ?

A B C D𝜇" 𝜇#

𝓖𝒦(
𝜇& 𝜇'

Figure 2: Factor graph GK and the corresponding augmented factor graph GK after running coloring refinement.

To better explain our idea, we define a fully grounded knowledge base as: K := (C,R,O ∪H) ,
where all unobserved facts are included and assigned a value of “?”. Therefore, the facts in K can
take one of three different values, i.e., v ∈ {0, 1, ?}. Its corresponding augmented factor graph is
GK = (C,O ∪H, E ∪ EH). See Fig. 2 for an illustration of GK and GK.
Theorem 5.1. Let GK = (C,O, E) be the factor graph for a knowledge base K and GK = (C,O ∪
H, E ∪ EH) be the corresponding augmented version. Then the following two statements are true:

(1) c GK←→ c′ if and only if c
GK←→ c′;

(2) [r(c1, . . . , cn) = v]
GK←→ [r(c′1, . . . , c

′
n) = v] if and only if (c1, . . . , cn)

GK←→ (c′1, . . . , c
′
n).

Intuitively, Theorem 5.1 means that without considering the presence of formulae in MLN, unobserved
predicatesH can be represented purely based on GNN embeddings obtained from GK. For instance,
to represent an unobserved predicate r(c1, . . . , cn) in GK, we only need to compute {µc, µo} =
GNN(GK), and then use MLPr (µc1 , . . . , µcn) as its feature. This feature representation is as expressive
as that obtained from {µc, µo} = GNN(GK), and thus drastically reducing the computation.

5.3 GNN is not expressive enough for posterior parametrization
Taking into account the influence of formulae on the posterior distributions of predicates, we can show
that GNN embeddings alone become insufficient representations for parameterizing these posteriors.
To better explain our analysis in this section, we first extend the definition of graph isomorphism to
node isomorphism and then state the theorem.
Definition 5.3 (Isomorphic Nodes). Two ordered sequences of nodes (c1, . . . , cn) and (c′1, . . . , c

′
n)

are isomorphic in a graph GK if there exists an isomorphism from GK = (C,O, E) to itself, i.e.,
π : C ∪ O → C ∪ O, such that π(c1) = c′1, . . . , π(cn) = c′n. Further, we use the following notation

(c1, · · · , cn)
GK⇐⇒ (c′1, · · · , c′n) : (c1, · · · , cn) and (c′1, · · · , c′n) are isomorphic in GK.

Theorem 5.2. Consider a knowledge base K = (C,R,O) and any r ∈ R. Two latent random
variables X := r(c1, . . . , cn) and X ′ := r(c′1, . . . , c

′
n) have the same posterior distribution in any

MLN if and only if (c1, · · · , cn)
GK⇐⇒ (c′1, · · · , c′n).

Remark. We say two random variables X,X ′ ∈ H have the same posterior if the marginal distri-
butions P (X|O) and P (X ′|O) are the same and, moreover, for any sequence of random variables
(X1, . . . , Xn) inH \ {X}, there exists a sequence of random variables (X ′1, . . . , X

′
n) inH \ {X ′}

such that the marginal distributions P (X,X1, . . . , Xn|O) and P (X ′, X ′1, . . . , X
′
n|O) are the same.

A proof is given in Appendix A. The proof of necessary condition is basically showing that, if
(c1, . . . , cn) and (c′1, . . . , c

′
n) are NOT isomorphic in GK, we can always define a formula which

can make r(c1, . . . , cn) and r(c′1, . . . , c
′
n) distinguishable in MLN and have different posterior

distributions. It implies an important fact that, to obtain an expressive representation for the posterior,

(1) either GNN embeddings need to be powerful enough to distinguish non-isomorphic nodes;
(2) or the information of formulae / MLN need to be incorporated into the parametrization.

The second condition (2) somehow defeats our purpose of using mean field approximation to speed
up the inference, so it is currently not considered. Unfortunately, condition (1) is also not satisfied,
because existing GNNs are at most as powerful as color refinement, which is not an exact graph
isomorphism test. Besides, node isomorphism mentioned in Theorem 5.2 is even more complex than
graph isomorphism because it is a constrained graph isomorphism.

We will interpret the implications of this theorem by an example. Figure 3 shows a factor graph
representation for a knowledge base which leads to the following observations:

• Even though A and B have opposite relations with E, i.e., F(A,E) = 1 but F(B,E) = 0, A and
B are indistinguishable in GK and thus have the same GNN embeddings, i.e., µA = µB .

5

L(A,E)
=?

𝑓(A,E) 𝑓(B,E)

L(B,E)
=?

F(A,E)
=1

F(B,E)
=0

F(A,E)
=1

F(B,F)
=1

F(B,E)
=0

F(A,F)
=0

A B 𝜇#
E F 𝜇$𝜇% 𝜇&

Figure 3: Top: A knowledge base with
0-1-0-1 loop. Bottom: MLN.

• Suppose f(c, c′) := F(c, c′) ⇒ L(c, c′) is the only formula
in MLN (L is Like and F is Friend). L(A,E) and L(B,E)
apparently have different posteriors. However, using GNN
embeddings, Q(L(A,E)) = logistic (MLPL(µA, µE)) is al-
ways identical to Q(L(B,E)) = logistic (MLPL(µB , µE)).

• There exists an isomorphism π1 : (A,E,B, F) 7→ (B,F,A,
E) such that π1(A) = B, but no isomorphism π satisfies
both π(A) = B and π(E) = E. Therefore, we see how the
isomorphism constraints in Theorem 5.2 make the problem
even more complex than graph isomorphism check.

To conclude, it is revealed that node embeddings by GNN alone
are not enough to express the posterior in MLN. We provide
more examples in Appendix B to explain that this case is very common and not a rare case. In the
next section, we will introduce a way of correcting the node embeddings.

6 ExpressGNN: More Expressive GNN with Tunable Embeddings

Algorithm 2:Q(r(c1, . . . , cn)) with ExpressGNN
{µc, µo} ← GNN(GK); µ̂c ← [µc, ωc], ∀c ∈ C;
Q(r(c1, . . . , cn))=logistic (MLPr(µ̂c1 , . . . , µ̂cn))

It is currently challenging to design a new GNN
that can check nodes isomorphism, because no
polynomial-time algorithm is known even for
unconstrained graph isomorphism test [14, 15].
In this section, we propose a simple yet effective solution. Take Figure 3 as an example:

To make Q(L(A,E)) different from Q(L(B,E)), we can simply introduce additional low dimen-
sional tunable embeddings ωA, ωB , and ωE and correct the parametrization as

logistic (MLPL([µA, ωA], [µE , ωE])) and logistic (MLPL([µB , ωB], [µE , ωE])) .

With tunable ωA and ωB , Q(L(A,E)) and Q(L(B,E)) can result in different values. In general,
we can assign each entity c ∈ C a low-dimensional tunable embedding ωc and concatenate it with
the GNN embedding µc to represent this entity. We call this variant ExpressGNN and describe the
parametrization of Q in Algorithm 2.

One can think of ExpressGNN as a hierarchical encoding of entities: GNN embeddings assign similar
codes to nodes similar in knowledge graph neighborhoods, while the tunable embeddings provide
additional capacity to code variations beyond knowledge graph structures. The hope is only a very
low dimensional tunable embedding is needed to fine-tune individual differences. Then the total
number of parameters in ExpressGNN could be much smaller than using tunable embedding alone.

ExpressGNN also presents an interesting trade-off between induction and transduction ability. The
GNN embedding part allows ExpressGNN to possess some generalization ability to new entities
and different knowledge graphs; while the tunable embedding part gives ExpressGNN the extra
representation power to perform accurate inference in the current knowledge graph.

7 Experiments
Table 1: Statistics of datasets.

Dataset #entity #ground #ground
predicate formula

FB15K-237 15K 50M 679B
Cora (avg) 616 157K 457M

K
in

sh
ip

S1 62 50K 550K
S2 110 158K 3M
S3 160 333K 9M
S4 221 635K 23M
S5 266 920K 39M

U
W

-C
SE

AI 300 95K 73M
Graphics 195 70K 64M
Language 82 15K 9M
Systems 277 95K 121M
Theory 174 51K 54M

Our experiments show that mean field approximation with
ExpressGNN enables efficient and effective probabilistic logic
inference and lead to to state-of-the-art results in several bench-
mark and large datasets. 1

Benchmark datasets. (i) UW-CSE contains information of
students and professors in five department (AI, Graphics, Lan-
guage, System, Theory) [1]. (ii) Cora [16] contains a collection
of citations to computer science research papers. It is split
into five subsets according to the research field. (iii) synthetic
Kinship datasets contain kinship relationships (e.g., Father, Brother) and resemble the popular
Kinship dataset [17]. (iv) FB15K-237 is a large-scale knowledge base [18]. Statistics of datasets are
provided in Table 1. See more details of datasets in Appendix C.

1Our implemented code is anonymously available at https://github.com/nips2019paper4823/ExpressGNN.

6

7.1 Ablation study and comparison to strong MLN inference methods

We conduct experiments on Kinship, UW-CSE and Cora, since other baselines can only scale up
to these datasets. We use the original logic formulae provided in UW-CSE and Cora, and use
hand-coded rules for Kinship. The weights for all formulae are set to 1. We use area under the
precision-recall curve (AUC-PR) to evaluate deductive inference accuracy for predicates never seen
during training, and under the open-world setting.2 See Appendix C for more details. Before
comparing to other baselines, we first perform an ablation study for ExpressGNN in Cora to explore
the trade-off between GNN and tunable embeddings. Table 2: AUC-PR for different combinations

of GNN and tunable embeddings. Tune d
stands for d-dim tunable embeddings and
GNN d stands for d-dim GNN embeddings.

Model Cora

S1 S2 S3 S4 S5

Tune64 0.57 0.74 0.34 0.55 0.70
GNN64 0.57 0.58 0.38 0.54 0.53
GNN64+Tune4 0.61 0.75 0.39 0.54 0.70

Tune128 0.62 0.76 0.42 0.60 0.73
GNN128 0.60 0.59 0.45 0.55 0.61
GNN64+Tune64 0.62 0.79 0.46 0.57 0.75

Ablation study. The number of parameters in GNN is
independent of entity size, but it is less expressive. The
number of parameters in the tunable component is linear
in entity size, but it is more expressive. Results on differ-
ent combinations of these two components are shown in
Table 2, which are consistent with our analytical result:
GNN alone is not expressive enough.

It is observed that GNN64+Tune4 has comparable perfor-
mance with Tune64, but consistently better than GNN64.
However, the number of parameters in GNN64+Tune4 is
O(642 + 4|C|), while that in Tune64 is O(64|C|). A simi-
lar result is observed for GNN64+Tune64 and Tune128. Therefore, ExpressGNN as a combination of
two types of embeddings can possess the advantages of both having a small number of parameters
and being expressive. Therefore, we will use ExpressGNN throughout the rest of the experiments
with hyperparameters optimized on the validation set. See Appendix C for details.

Inference accuracy. We evaluate the inference accuracy of ExpressGNN against a number of state-
of-the-art MLN inference algorithms: (i) MCMC (Gibbs Sampling) [19, 1]; (ii) Belief Propagation
(BP) [20]; (iii) Lifted Belief Propagation (Lifted BP) [8]; (iv) MC-SAT [21]; (v) Hinge-Loss Markov
Random Field (HL-MRF) [22]. Results are shown in Table 3.

Table 3: Inference accuracy (AUC-PR) of different methods on three benchmark datasets.

Method Kinship UW-CSE Cora

S1 S2 S3 S4 S5 AI Graphics Language Systems Theory (avg)

MCMC 0.53 - - - - - - - - - -
BP / Lifted BP 0.53 0.58 0.55 0.55 0.56 0.01 0.01 0.01 0.01 0.01 -
MC-SAT 0.54 0.60 0.55 0.55 - 0.03 0.05 0.06 0.02 0.02 -
HL-MRF 1.00 1.00 1.00 1.00 - 0.06 0.06 0.02 0.04 0.03 -

ExpressGNN 0.97 0.97 0.99 0.99 0.99 0.09 0.19 0.14 0.06 0.09 0.64

A hyphen in the entry indicates that the inference is either out of memory or exceeds the time limit
(24 hours). Note that since the lifted BP is guaranteed to get identical results as BP [8], the results
of these two methods are merged into one row. For UW-CSE, the results suggest that ExpressGNN
consistently outperforms all baselines. On synthetic Kinship, since the dataset is noise-free, HL-MRF
achieves the score of 1 for the first four sets. ExpressGNN yields similar but not perfect scores for all
the subsets, presumably caused by the stochastic nature of our sampling and optimization method.

Inference efficiency. The inference time on UW-CSE and Kinship are summarized in Figure 4
(Cora is omitted as none of the baselines is feasible). As the size of the dataset grows linearly,
inference time of all baseline methods grows exponentially. ExpressGNN maintains a nearly constant
inference time with the increasing size of the dataset, demonstrating strong scalability. For HL-MRF,
while maintaining a comparatively short wall-clock time, it exhibits an exponential increase in the
space complexity. Slower methods such as MCMC and BP becomes infeasible for large datasets.
ExpressGNN outperforms all baseline methods by at least one or two orders of magnitude.

7.2 Large-scale knowledge base completion

We use a large-scale dataset, FB15K-237 [18], to show the scalability of ExpressGNN. Since none
of the aforementioned probabilistic inference methods are tractable on this dataset, we compare
with several state-of-the-art supervised methods for knowledge base completion: (i) Neural Logic

2In Appendix E, we report the performance under the closed-world setting as in the original works.

7

Method Inference Time (minutes)

AI Graphics Language Systems Theory

MCMC >24h >24h >24h >24h >24h
BP 408 352 37 457 190
Lifted BP 321 270 32 525 243
MC-SAT 172 147 14 196 86
HL-MRF 135 132 18 178 72

ExpressGNN 14 20 5 7 13

900

920

940

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

ExpressGNN
HL-MRF
Lifted BP
BP
MC-SAT
MCMC

S1 S2 S3 S4 S5
0

100

200

300

In
fe

re
nc

e
tim

e
(m

in
ut

es
)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

Figure 4: Left / Right: Inference time on UW-CSE / Kinship respectively. N/A indicates the method is infeasible.

Programming (Neural LP) [23]; (ii) Neural Tensor Network (NTN) [24]; (iii) TransE [25]. In
these knowledge completion experiments, we follow the setting in [10] to add a discriminative loss∑

r(ar)∈O logQ(r(ar)) to better utilize observed data. We use Neural LP to generate candidate rules
and pick up those with high confidence scores for ExpressGNN. See Appendix F for examples of
logic formulae used in experiments. For competitor methods, we use default tuned hyperparameters,
which can reproduce the experimental results reported in their original works.

Evaluation. Given a query, e.g., r(c, c′), the task is to rank the query on top of all possible grounding
of r. For evaluation, we compute the Mean Reciprocal Ranks (MRR), which is the average of the
reciprocal rank of all the truth queries, and Hits@10, which is the percentage of truth queries that are
ranked among top 10. Following the protocol proposed in [23, 25], we also use filtered rankings.

Table 4: Comparison on FB15K-237 with varied training set size.

Model MRR Hits@10

0% 5% 10% 20% 100% 0% 5% 10% 20% 100%

Neural LP 0.01 0.13 0.15 0.16 0.24 1.5 23.2 24.7 26.4 36.2
NTN 0.09 0.10 0.10 0.11 0.13 17.9 19.3 19.1 19.6 23.9
TransE 0.21 0.22 0.22 0.22 0.28 36.2 37.1 37.7 38.0 44.5

ExpressGNN 0.42 0.42 0.42 0.44 0.45 53.1 53.1 53.3 55.2 57.3

Table 5: Inductive knowledge
completion on FB15K-237.
Model MRR Hits@10

Neural LP 0.01 2.7
NTN 0.00 0.0
TransE 0.00 0.0

ExpressGNN 0.18 29.3

Data efficiency in transductive setting. We demonstrate the data efficiency of using logic formula
and compare ExpressGNN with aforementioned supervised approaches. More precisely, we follow
[23] to split the knowledge base into facts / training / validation / testing sets, vary the size of
the training set from 0% to 100%, and feed the varied training set with the same complete facts
set to models for training. Evaluations on testing set are given in Table 4. It shows with small
training data ExpressGNN can generalize significantly better than supervised methods. With more
supervision, supervised approaches start to close the gap with ExpressGNN. This also suggests that
high confidence logic rules indeed help us generalize better under small training data.

Inductive ability. To demonstrate the inductive learning ability of ExpressGNN, we conduct experi-
ments on FB15K-237 where training and testing use disjoint sets of both entities and relations. To
prepare data for such setting, we first randomly select a subset of relations, and restrict the test set to
relations in this selected subset, which is similar to [25]. Table 5 shows the experimental results. As
expected, in this inductive setting, supervised transductive learning methods such as NTN and TransE
drop to zero in terms of MRR and Hits@103. Neural LP performs inductive learning and generalizes
well to new entities in the test set as discussed in [23]. However, in our inductive setting, where all
the relations in the test set are new, Neural LP is not able to achieve good performance as reported in
Table 5. In contrast, ExpressGNN can directly exploit first-order logic and is much less affected by
the new relations, and achieve reasonable performance at the same scale as the non-inductive setting.

8 Conclusion

Our analysis shows that GNN while being suitable for probabilistic logic inference in MLN, is
not expressive enough. Motivated by this analysis, we propose ExpressGNN, an integrated GNN
and tunable embedding approach, which has a trade-off between model size and expressiveness,
and leads to scalable and effective logic inference in both transductive and inductive experiments.
ExpressGNN opens up many possibilities for future research such as formula weight learning
with variational inference, incorporating entity features and neural tensorized logic formulae, and
addressing challenging datasets such as GQA [26].

3The MRR and Hits@10 are both smaller than 0.01 for NTN and TransE.

8

References
[1] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62(1-

2):107–136, 2006.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

[3] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages 2224–
2232, 2015.

[4] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for
structured data. In International conference on machine learning, pages 2702–2711, 2016.

[5] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In ICLR, 2016.

[6] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[8] Parag Singla and Pedro M Domingos. Lifted first-order belief propagation. In AAAI, volume 8,
pages 1094–1099, 2008.

[9] Parag Singla, Aniruddh Nath, and Pedro M Domingos. Approximate lifting techniques for
belief propagation. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[10] Qu Meng, Bengio Yoshua, and Tang Jian. Gmnn: Graph markov neural networks. arXiv
preprint arXiv:1905.06214, 2019.

[11] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[12] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[13] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12(Sep):2539–2561, 2011.

[14] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman
New York, 2002.

[15] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 684–697. ACM, 2016.

[16] Parag Singla and Pedro Domingos. Discriminative training of markov logic networks. In AAAI,
volume 5, pages 868–873, 2005.

[17] Woodrow W Denham. The detection of patterns in Alyawara nonverbal behavior. PhD thesis,
University of Washington, Seattle., 1973.

[18] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality, pages 57–66, 2015.

[19] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo in
practice. Chapman and Hall/CRC, 1995.

[20] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Generalized belief propagation. In
Advances in neural information processing systems, pages 689–695, 2001.

9

[21] Hoifung Poon and Pedro Domingos. Sound and efficient inference with probabilistic and
deterministic dependencies. In AAAI, volume 6, pages 458–463, 2006.

[22] Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-loss markov random
fields and probabilistic soft logic. arXiv preprint arXiv:1505.04406, 2015.

[23] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for
knowledge base completion. CoRR, abs/1702.08367, 2017.

[24] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In Advances in neural information processing
systems, pages 926–934, 2013.

[25] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

[26] Drew A Hudson and Christopher D Manning. Gqa: a new dataset for compositional question
answering over real-world images. arXiv preprint arXiv:1902.09506, 2019.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10

Appendix

A Proof of Theorems

Theorem 5.1. Let GK = (C,O, E) be the factor graph for a knowledge base K and GK = (C,O ∪
H, E ∪ EH) be the corresponding augmented version. Then the following two statements are true:

(1) c GK←→ c′ if and only if c
GK←→ c′;

(2) [r(c1, . . . , cn) = v]
GK←→ [r(c′1, . . . , c

′
n) = v] if and only if (c1, . . . , cn)

GK←→ (c′1, . . . , c
′
n).

Proof. For simplicity, we use G and G′ to represent GK and GK in this proof.

2. Let us first assume statement 1 is true and prove statement 2.

The neighbors of H := [r(c1, . . . , cn) = v] and H ′ := [r(c′1, . . . , c
′
n) = v] are

N (H) = {(ci, i) : i = 1, . . . , n} and N (H ′) = {(c′i, i) : i = 1, . . . , n} (4)
where i represents the edge type. It is easy to see that H and H ′ are indistinguishable in
G′ if and only if c′i and ci are indistinguishable in G′ for i = 1, . . . , n. By statement 1, c′i
and ci are indistinguishable in G′ if and only if c′i and ci are indistinguishable in G. Hence,
statement 2 is true. Now it remains to prove statement 1.

1. (⇐) If c and c′ are distinguishable in G, it is easy to see c and c′ are also distinguishable in
the new graph G′. The reason is that the newly added nodesH are of different types from the
observed nodes O in G, so that these newly added nodes can not make two distinguishable
nodes to become indistinguishable.

(⇒) Assume that c and c′ are indistinguishable in G, we will prove they are indistinguishable
in G′ using MI (mathematical induction). The idea is to construct the new graph G′ by con-
necting the unobserved nodes inH in a particular order. More specifically, we first connect
all unobserved grounded predicates [r(c1, . . . , cn) =?] ∈ H to their first arguments c1, and
the resulting graph is denoted by G(1). Then we can connect all [r(c1, c2, . . . , cn) =?] ∈ H
to their second arguments c2 and denote the resulting graph by G(2). In this way, we obtain
a sequence of graphs

{
G(k)

}R
k=1

where R := max {n : r ∈ R} is the maximal number of
arguments. It is clear that G′ = G(R). In the following, we will use MI to prove that for all
k = 1, . . . , R, if c and c′ are indistinguishable in G, then they are indistinguishable in G(k).
Proof of (MI 1):

Consider any predicate r ∈ R. For any two indistinguishable nodes c, c′ in G,
{r(c, . . .) : observed} = # {r(c′, . . .) : observed}. Hence, it is obvious that

{r(c, . . .) : unobserved} = # {r(c′, . . .) : unobserved} =M. (5)
Before connected to the graph G, the unobserved nodes {r(·) : unobserved} are all indistin-
guishable because they are of the same node-type. Now we connect all these unobserved
nodes to its first argument. Then c is connected to {r(c, . . .) : unobserved} and c′ is con-
nected to {r(c′, . . .) : unobserved}. Since both c and c′ are connected M unobserved nodes
and these nodes are indistinguishable, c and c′ remain to be indistinguishable. Also, after
connected to its first argument, r(c, . . .) and r(c′, . . .) are indistinguishable if and only if c
and c′ are indistinguishable, which is obvious.

Similarly, we can connect all unobserved grounded predicates to its first argument. In the
resulting graph, two nodes are indistinguishable if they are indistinguishable in G.

Assumption (MI k):

Assume that after connecting all unobserved grounded predicates to their first k arguments,
the constant nodes in the resulting graph, G(k), are indistinguishable if they are indistin-
guishable in G.

Proof of (MI k + 1):

11

The constants C in G can be partitioned into N groups C =
⋃N

i=1 C(i), where the constants
in the same group C(i) are indistinguishable in G (and also indistinguishable in G(k)).
Consider a predicate r∗ ∈ R. The set of unobserved grounded predicates where the
(k + 1)-th argument is c can be written as
{r∗(. . . , ck+1 = c, . . .) : unobserved} (6)

=

N⋃
i1=1

· · ·
N⋃

ik=1

{
r∗(c1, . . . , ck, ck+1 = c, . . .) : ci ∈ C(i1), . . . , ck ∈ C(ik), unobserved

}
.

(7)
Similar to the arguments in (MI 1), for any two indistinguishable nodes c and c′, for any
fixed sequence of groups i1, . . . , ik, the size of the following two sets are the same:
M(i1, . . . , ik) =#

{
r∗(c1, . . . , ck, ck+1 = c, . . .) : ci ∈ C(i1), . . . , ck ∈ C(ik), unobserved

}
(8)

=#
{
r∗(c1, . . . , ck, ck+1 = c′, . . .) : ci ∈ C(i1), . . . , ck ∈ C(ik), unobserved

}
.
(9)

Also, all grounded predicates in the above two sets are indistinguishable in G(k) because their
first k arguments are indistinguishable. Hence, these are two sets of M(i1, . . . , ik) many
indistinguishable nodes. In conclusion, the two sets {r∗(. . . , ck+1 = c, . . .) : unobserved}
and {r∗(. . . , ck+1 = c′, . . .) : unobserved} are indistinguishable in G(k) if c and c′ are
indistinguishable.

Now we connect all unobserved r∗(·) to their (k + 1)-th arguments. Then the con-
stant node c is connected to {r∗(. . . , ck+1 = c, . . .) : unobserved} and c′ is connected
to {r∗(. . . , ck+1 = c′, . . .) : unobserved}. Since these two sets are indistinguishable, then
c and c′ remain to be indistinguishable.

Similarly, for other predicates r ∈ R, we can connect all unobserved grounded predicates
r(·) to their (k+ 1)-th arguments. In the resulting graph, G(k+1), any pair of two nodes will
remain indistinguishable if they are indistinguishable in G.

Theorem 5.2. Consider a knowledge base K = (C,R,O) and any r ∈ R. Two latent random
variables X := r(c1, . . . , cn) and X ′ := r(c′1, . . . , c

′
n) have the same posterior distribution in any

MLN if and only if (c1, · · · , cn)
GK⇐⇒ (c′1, · · · , c′n).

Proof. A graph isomorphism from G to itself is called automorphism, so in this proof, we will use
the terminology - automorphism - to indicate such a self-bijection.

(⇐=) We first prove the sufficient condition:

If ∃ automorphism π on the graph GK such that π(ci) = c′i,∀i = 1, ..., n, then for
any r ∈ R, r(c1, . . . , cn) and r(c′1, . . . , c

′
n) have the same posterior in any MLN.

MLN is a graphical model that can also be represented by a factor graph MLN = (O ∪ H,Fg, E)
where grounded predicates (random variables) and grounded formulae (potential) are connected. We
will show that ∃ an automorphism φ on MLN such that φ (r(c1, . . . , cn)) = r(c′1, . . . , c

′
n). Then the

sufficient condition is true. This automorphism φ is easy to construct using the automorphism π on
GK. More precisely, we define φ : (O ∪H,Fg)→ (O ∪H,Fg) as

φ(r(ar)) = r(π(ar)), φ(f(af)) = f(π(af)), (10)
for any predicate r ∈ R, any assignments ar to its arguments, any formula f ∈ F , and any
assignments af to its arguments. It is easy to see φ is an automorphism:

1. Since π is a bijection, apparently φ is also a bijection.
2. The above definition preserves the biding of the arguments. r(ar) and f(af) are connected if and

only if φ(r(ar)) and f(π(af)) are connected.
3. Given the definition of π, we know that r(ar) and r(π(ar)) have the same observation value.

Therefore, in MLN, NodeType(r(ar)) = NodeType(φ(r(ar))).

12

This completes the proof of the sufficient condition.

(=⇒) To prove the necessary condition, it is equivalent to show given the following assumption

(A 1): there is no automorphism π on the graph GK such that π(ci) = c′i,∀i =
1, ..., n,

the following statement is true:

there must exists a MLN and a predicate r in it such that r(c1, . . . , cn) and
r(c′1, . . . , c

′
n) have different posterior.

Before showing this, let us first introduce the factor graph representation of a single logic formula
f .

A logic formula f can be represented as
a factor graph, Gf = (Cf ,Rf , Ef), where
nodes on one side of the graph is the set of
distinct constants Cf needed in the formula,
while nodes on the other side is the set of
predicates Rf used to define the formula.
The set of edges, Ef , will connect constants
to predicates or predicate negation. That is,
an edge

e = (c, r, i) between
node c and predicate r ex-
ists, if the predicate r use
constant c in its i-th argu-
ment.

We note that the set of distinctive constants
used in the definition of logic formula are
templates where actual constant can be in-

stantiated from C. An illustration of logic
formula factor graph can be found in Fig-
ure 5. Similar to the factor graph for the
knowledge base, we also differentiate the
type of edges by the position of the argu-
ment.

Y ZX

Daughter(Z, X)¬ Mother(Y, Z)¬ Husband(X, Y)

Figure 5: An example of factor graph
for the logic formula ¬Husband(X,Y) ∨
¬Mother(Y,Z) ∨ Daughter(Z,X).

Therefore, every single formula can be represented by a factor graph. We will construct a factor graph
representation to define a particular formula, and show that the MLN induced by this formula will
result in different posteriors for r(c1, . . . , cn) and r(c′1, . . . , c

′
n). The factor graph for the formula is

constructed in the following way (See Figure 8 as an example of the resulting formula constructed
using the following steps):

(i) Given the above assumption (A 1), we claim that:

∃ a subgraph G∗c1:n = (C∗c ,O∗c , E∗c) ⊆ GK such that all subgraphs Gc′1:n = (Cc′ ,Oc′ , Ec′) ⊆
GK satisfy:

(Condition) if there exists an isomorphism φ : G∗c1:n → Gc′1:n satisfying
φ(ci) = c′i,∀i = 1, . . . , n after the observation values are IGNORED (that
is, [rj(· · ·) = 0] and [rj(· · ·) = 1] are treated as the SAME type of nodes), then
the set of fact nodes (observations) in these two graphs are different (that is,
O∗c 6= Oc′).

The proof of this claim is given at the end of this proof.

(ii) Next, we use G∗c1:n to define a formula f . We first initialize the definition of the formula
value as

f(c1, . . . , cn, c̃1, . . . , c̃n) =
(
∧
{
r̃(ar̃) : r̃(ar̃) ∈ G∗c1:n

})
⇒ r(c1, . . . , cn). (11)

Then, we change r̃(ar̃) in this formula to the negation ¬r̃(ar̃) if the observed value of r̃(ar̃)
is 0 in G∗c1:n .

13

We have defined a formula f using the above two steps. Suppose the MLN only contains this formula
f . Then

the two nodes r(c1, . . . , cn) and r(c′1, . . . , c
′
n) in this MLN must be distinguishable.

The reason is, in MLN, r(c1, . . . , cn) is connected to a grounded formula f(c1, . . . , cn, c̃1, . . . , c̃n),
whose factor graph representation is G∗c1:n ∪ r(c1, . . . , cn). In this formula, all variables are observed
in the knowledge base K except for r(c1, . . . , cn) and and the observation set is O∗c . The formula
value is

f(c1, . . . , cn, c̃1, . . . , c̃n) = (1⇒ r(c1, . . . , cn)) . (12)
Clarification: Equation 11 is used to define a formula and ci in this equation can be replaced by
other constants, while Equation 12 represents a grounded formula whose arguments are exactly
c1, . . . , cn, c̃1, . . . , c̃n. Based on (Condition), there is NO formula f(c′1, . . . , c

′
n, c̃
′
1, . . . , c̃

′
n) that con-

tains r(c′1, . . . , c
′
n) has an observation set the same asO∗c . Therefore, r(c1, . . . , cn) and r(c′1, . . . , c

′
n)

are distinguishable in this MLN.

Proof of claim:

We show the existence by constructing the subgraph G∗c1:n ⊆ GK in the following way:

(i) First, we initialize the subgraph as G∗c1:n := GK. Given assumption (A 1) stated above, it is clear
that

(S 1) ∀ subgraph G′ ⊆ GK, there is no isomorphism π : G∗c1:n → G
′ satisfying π(ci) =

c′i,∀i = 1, . . . , n.

(ii) Second, we need to check wether the following case occurs:

(C 1) ∃ a subgraph G′ = (C′,O′, E ′) such that (1) there EXISTS an isomorphism φ :
G∗c1:n → G

′ satisfying φ(ci) = c′i,∀i = 1, . . . , n after the observation values are IGNORED
(that is, [rj(· · ·) = 0] and [rj(· · ·) = 1] are treated as the same type of nodes); and (2) the
set of factor nodes (observations) in these two graphs are the same (that is, O∗c = O′).

(iii) Third, we need to modify the subgraph if the case (C 1) is observed. Since
∣∣G∗c1:n ∣∣ ≥ |G′|, the

only subgraph that will lead to the case (C1) is the maximal subgraph G∗c1:n . The isomorphism φ is
defined by ignoring the observation values, while the isomorphism π in (S 1) is not ignoring them.
Thus,

(S 1) and (C 1) =⇒ ∃ a set of nodes S :=
{[
rj(a

(1)) = 0
]
, . . . ,

[
rj(a

(n)) = 0
]}

such
that for any isomorphism φ satisfying the conditions in (C 1), the range φ(S) contains at
least one node [rj(·) = 1] which has observation value 1.

Otherwise, it is easy to see a contradiction to statement (S 1).

(M 1) Modify the subgraph by G∗c1:n ←− G
∗
c1:n \ S. The nodes (and also their edges) in the

set S :=
{[
rj(a

(1)) = 0
]
, . . . ,

[
rj(a

(n)) = 0
]}

are removed.

For the new subgraph G∗c1:n after the modification (M 1), the case (C 1) will not occur. Thus, we’ve
obtained a subgraph that satisfies the conditions stated in the claim. Finally, we can remove the nodes
that are not connected with {c1, . . . , cn} (that is, there is no path between this node and any one of
{c1, . . . , cn}). The remaining graph is connected to {c1, . . . , cn} and still satisfies the conditions that
we need.

14

B Counter Examples

We provide more examples in this section to show that it is more than a rare case that GNN embeddings
alone are not expressive enough.

B.1 Example 1

L(A,E)
=?

𝑓(A,E) 𝑓(B,E)

L(B,E)
=?

F(A,E)
=1

F(B,E)
=?

A

B

E

F

F(A,E)=1

F(B,F)=1

Figure 6: Example 1. Top: Knowledge base. Bottom: MLN

Unlike the example shown in main text, where A and B have OPPOSITE relation with E, Figure 6
shows a very simple example where A and B have exactly the same structure which makes A and B
indistinguishable and isomorphic. However, since (A,E) and (B,E) are not isomorphic, it can be easily
seen that L(A, E) has different posterior from L(B, E).

B.2 Example 2

F(A,E)=1

F(B,F)=1

F(B,E)=0F(
A
,F
)=
0

A

B

E

F

L(A,E)
=?

𝑓(A,E) 𝑓(B,E)

L(B,E)
=?

F(A,E)
=1

F(B,E)
=0

Figure 7: The same example as in Figure 3. Top: Knowledge base. Bottom: MLN

Figure 7 shows an example which is the same as in Figure 3. However, in this example, it is already
revealed in the knowledge base that (A, E) and (B, E) have different local structures as they are
connected by different observations. That is, (A, [F(A, E) = 1] , E) and (B, [F(B, E) = 0] , E) can be
distinguished by GNN.

Now, we use another example in Figure 8 to show that even when the local structures are the same,
the posteriors can still be different, which is caused by the formulae.

15

F(A,E)=1
C H

D

KG

M

F(D
,K
)=1

F(G
,M
)=1

F(D
,H
)=0

F(G,K)=0

F(
C,
M
)=
0

F(A,E)=1

F(B,F)=1

F(B,E)=0F(
A
,F
)=
0

A

B

E

F

𝑓 𝑐#,𝑐%,𝑐&,𝑐' ≔ F 𝑐#,𝑐% ∧ F 𝑐&,𝑐%¬ ∧ F 𝑐&,𝑐' ∧ F 𝑐#,𝑐'¬ ⇒ L(𝑐#,𝑐%)

L(A,E)
=?

𝑓(A,E,B,F) 𝑓(C,H,D,K)

L(C,H)
=?

F(A,E)
=1

F(B,E)
=0

F(B,F)
=1

F(A,F)
=0

F(C,H)
=1

F(H,D)
=0

F(D,K)
=1

F(C,K)
=?

... … 𝑓(C,H,G,M) ... …

F(C,H)
=1

F(G,M)
=1

F(G,H)
=?

F(C,M)
=0

Figure 8: Example 2. Top: Knowledge base. Bottom: MLN

In Figure 8, (A, E) and (C, H) have the same local structure, so that the tuple (A, [F(A, E) = 1] , E) and
(C, [F(C, H) = 1] , H) can NOT be distingushed by GNN. However, we can make use of subgraph
(A, E, B, F) to define a formula, and then the resulting MLN gives different posterior to L(A, E) and
L(C, H), as can be seen from the figure. Note that this construction of MLN is the same as the
construction steps stated in the proof in Section A.

16

C Experiment Settings

Experimental setup. All the experiments are conducted on a GPU-enabled (Nvidia RTX 2080 Ti)
Linux machine powered by Intel Xeon Silver 4116 processors at 2.10GHz with 256GB RAM. We
implement ExpressGNN using PyTorch and train it with Adam optimizer [27]. To ensure a fair
comparison, we allocate the same computational resources (CPU, GPU and memory) for all the
experiments. We use default tuned hyperparameters for competitor methods, which can reproduce
the experimental results reported in their original works. For ExpressGNN, we use 0.0005 as the
initial learning rate, and decay the learning rate by half for every 10 epochs without improvement
in terms of validation loss. For Kinship, UW-CSE and Cora, we run ExpressGNN with a fixed
number of iterations, and use the smallest subset from the original split for hyperparameter tuning.
For FB15K-237, we use the original validation set to tune the hyperparameters.

Here are more details of the setup of ExpressGNN. We use a two-layer MLP with ReLU activation
function as the nonlinear transformation for each embedding update step in the graph neural network
in Algorithm 1. For different steps, we learn different MLP parameters. To increase the model
capacity of ExpressGNN, we also use different MLP parameters for different edge type, and for a
different direction of embedding aggregation. As we discussed in Section 7.1, the number of trainable
parameters in GNN alone is independent of the number of entities in the knowledge base. Therefore,
it has a minor impact on the computational cost by using different MLP parameters as described
above. For each dataset, we search the configuration of ExpressGNN on either the validation set
or the smallest subset. The configuration we search includes the embedding size, the split point of
tunable embeddings and GNN embeddings, the number of embedding update steps, and the sampling
batch size.

Task and evaluation metrics. The deductive logic inference task is to answer queries that typically
involve single predicate. For example in UW-CSE, the task is to predict the AdvisedBy(c,c′) relation
for all persons in the set. In Cora, the task is to de-duplicate entities, and one of the query predicates
is SameAuthor(c,c′). As for Kinship, the task is to predict whether a person is male or female, i.e.,
Male(c). For each possible substitution of the query predicate with different entities, the model
is tasked to predict whether it’s true or not. Then we use the area under the precision-recall curve
(AUC-PR) as the evaluation metric for inference accuracy. Due to the severe imbalance of positive
and negative samples in typical logic reasoning tasks, the AUC-PR is better than the AUC-ROC to
reflect the actual model performance and is widely used in the literature [1].

For knowledge base completion, all methods are evaluated on test sets with Mean Reciprocal Rank
(MRR) and Hits@10. Both are commonly used metrics for knowledge base completion. For each test
query r(c, c′) with respect to relation r, the model is tasked to generate a rank list over all possible
instantiations of r and sort them according to the model’s confidence on how likely this instantiation
is true. Then MRR is computed as the average over all the reciprocal ranks of each r(c, c′) in its
corresponding rank list, and Hits@10 is computed as the average times of ranking of the true fact
in top 10 predictions. If two candidate entities have the same score, we break the tie by ranking the
wrong ones ahead. This ensures a fair comparison for all methods. Additionally, before evaluation,
the rank list will be filtered [23, 25] so that it does not contain any true fact other than r(c, c′) itself.

Sampling method. As there are exponential many formulae in the sampling space, one cannot
sample by explicitly enumerating all the formulae and permute them. On the other hand, not all
ground formulae will contribute to the optimization during training. For example, a ground formula
that only contains observed variables will not contribute gradients, as evaluating this formula is
independent of the latent variable posterior.

To overcome these challenges, we propose the following efficient sampling scheme: 1) to sample a
ground formula we start from uniformly sampling a formula f from the space of F ; 2) shuffle its
predicate spaceRf into a sequence; 3) for each predicate r popped from the top of theRf , with a
probability of pobs we instantiate it as an observed variable and with a probability of 1− pobs it will
become a uniformly sampled variable; 4) to instantiate an observed variable, we list all facts stored in
the knowledge base with respect to predicate r and uniformly sample from it. In the case where no
fact can be found, or if we hit probability 1− pobs, then the predicate r will be instantiated with a
random constant. Once a formula is fully instantiated, we examine its form and reject those without
any latent variable.

17

Table 6: Complete statistics of the benchmark and synthetic datasets.

Dataset # entity # relation # fact # query # ground # ground
predicate formula

FB15K-237 15K 237 272K 20K 50M 679B

Kinship-S1 62 15 187 38 50K 550K
Kinship-S2 110 15 307 62 158K 3M
Kinship-S3 160 15 482 102 333K 9M
Kinship-S4 221 15 723 150 635K 23M
Kinship-S5 266 15 885 183 920K 39M

UW-CSE-AI 300 22 731 4K 95K 73M
UW-CSE-Graphics 195 22 449 4K 70K 64M
UW-CSE-Language 82 22 182 1K 15K 9M
UW-CSE-Systems 277 22 733 5K 95K 121M
UW-CSE-Theory 174 22 465 2K 51K 54M

Cora-S1 670 10 11K 2K 175K 621B
Cora-S2 602 10 9K 2K 156K 431B
Cora-S3 607 10 18K 3K 156K 438B
Cora-S4 600 10 12K 2K 160K 435B
Cora-S5 600 10 11K 2K 140K 339B

In experiments, we set pobs as 0.9. The intuition is that one wants to prioritize on sampling formulae
containing both observed and latent variables. Otherwise, in the cases where a formula is fully latent,
GNN is essentially optimizing towards learning the prior distribution determined by the form of
formula and its weight, which is unlikely to be close to the actual posterior distribution. Additionally,
for knowledge completion on FB15K-237, we further control the sample space to be query-related.
Each time the model is fed with a query r(c, c′), we sample only the ground formulae with r as the
positive literal and containing constants c and c′.

D Dataset Details

For experiments, we use four benchmark datasets: 1) The social network dataset UW-CSE [1]
contains publicly available information of students and professors in the CSE department of UW. The
dataset is split into five sets according to the home department of the entities. 2) The entity resolution
dataset Cora [16] consists of a collection of citations to computer science research papers. The dataset
is also split into five subsets according to the field of research. 3) We introduce a synthetic dataset
that resembles the popular Kinship dataset [17]. The original dataset contains kinship relationships
(e.g., Father, Brother) among family members in the Alyawarra tribe from Central Australia. We
generate five sets by linearly increasing the number of entities. 4) The knowledge base completion
benchmark FB15K-237 [18] is a generic knowledge base constructed from Freebase, which is
designed to a more challenging variant of FB15K. More specifically, FB15K-237 is constructed
by removing near-duplicate and inverse relations from FB15K. The dataset is split into training /
validation / testing and we use the same split of facts from training as in prior work [23].

D.1 Datasets statistics

The complete statistics of the benchmark and synthetic datasets are shown in Table 6. The statistics
of Cora is averaged over its five splits. Examples of logic formulae used in four benchmark datasets
are listed in Table 8.

D.2 Synthetic Kinship Dataset

The synthetic dataset closely resembles the original Kinship dataset but with a controllable number
of entities. To generate a dataset with n entities, we randomly split n entities into two groups which
represent the first and second generation respectively. Within each group, entities are grouped into a
few sub-groups representing the sister- and brother-hood. Finally, entities from different sub-groups
in the first generation are randomly coupled and a sub-group in the second generation is assigned to

18

Table 7: Inference performance of competitors and our method under the closed-world semantics.

Method Cora UW-CSE

S1 S2 S3 S4 S5 AI Graphics Language Systems Theory

MCMC 0.43 0.63 0.24 0.46 0.56 0.19 0.04 0.03 0.15 0.08
BP / Lifted BP 0.44 0.62 0.24 0.45 0.57 0.21 0.04 0.01 0.14 0.05
MC-SAT 0.43 0.63 0.24 0.46 0.57 0.13 0.04 0.03 0.11 0.08
HL-MRF 0.60 0.78 0.52 0.70 0.81 0.26 0.18 0.06 0.27 0.19

them as their children. To generate the knowledge base, one traverse this family tree, and record all
kinship relations for each entity. In this experiment, we generate five datasets by linearly increasing
the number of entities. Examples of the first-order logic formulae used in the Kinship dataset is
summarized in Table 8.

E Inference with Closed-World Semantics for Baseline Methods

In Section 7.1 we compare ExpressGNN with five probabilistic inference methods under open-world
semantics. This is different from the original works, where they generally adopt the closed-world
setting due to the scalability issues. More specifically, the original works assume that the predicates
(except the ones in the query) observed in the knowledge base is closed, meaning for all instantiations
of these predicates that do not appear in the knowledge base are considered false. Note that only the
query predicates remain open-world in this setting.

For sanity checking, we also conduct these experiments with a closed-world setting. We found the
results summarized in Table 7 are close to those reported in the original works. This shows that
we have a fair setup (including memory size, hyperparameters, etc.) for those competitor methods.
Additionally, one can find that the AUC-PR scores compared to those (Table 3) under open-world
setting are actually better. This is due to the way the datasets were originally collected and evaluated
generally complies with the closed-world assumption. But this is very unlikely to be true for real-
world and large-scale knowledge base such as Freebase and WordNet, where many true facts between
entities are not observed. Therefore, in general, the open-world setting is much more reasonable,
which we follow throughout this paper.

F Logic Formulae

We list some examples of logic formulae used in four benchmark datasets in Table 8. The full list of
logic formulae is available in our source code repository. Note that these formulae are not necessarily
as clean as being always true, but are typically true.

For UW-CSE and Cora, we use the logic formulae provided in the original dataset. UW-CSE provides
94 hand-coded logic formulae, and Cora provides 46 hand-coded rules. For Kinship, we hand-code
22 first-order logic formulae. For FB15K-237, we first use Neural LP [23] on the full data to generate
candidate rules. Then we select the ones that have confidence scores higher than 90% of the highest
scored formulae sharing the same target predicate. We also de-duplicate redundant rules that can be
reduced to other rules by switching the logic variables. Finally, we have generated 509 logic formulae
for FB15K-237.

19

Table 8: Examples of logic formulae used in four benchmark datasets.
Dataset First-order Logic Formulae

Kinship

Father(X,Z) ∧ Mother(Y,Z)⇒ Husband(X,Y)
Father(X,Z) ∧ Husband(X,Y)⇒ Mother(Y,Z)
Husband(X,Y)⇒ Wife(Y,X)
Son(Y,X)⇒ Father(X,Y) ∨ Mother(X,Y)
Daughter(Y,X)⇒ Father(X,Y) ∨ Mother(X,Y)

UW-CSE

taughtBy(c, p, q) ∧ courseLevel(c, Level500)⇒ professor(p)
tempAdvisedBy(p, s)⇒ professor(p)
advisedBy(p, s)⇒ student(s)
tempAdvisedBy(p, s)⇒ student(s)
professor(p) ∧ hasPosition(p, Faculty)⇒ taughtBy(c, p, q)

Cora

SameBib(b1,b2) ∧ SameBib(b2,b3)⇒ SameBib(b1,b3)
SameTitle(t1,t2) ∧ SameTitle(t2,t3)⇒ SameTitle(t1,t3)
Author(bc1,a1) ∧ Author(bc2,a2) ∧ SameAuthor(a1,a2)⇒ SameBib(bc1,bc2)
HasWordVenue(a1, +w) ∧ HasWordVenue(a2, +w)⇒ SameVenue(a1, a2)
Title(bc1,t1) ∧ Title(bc2,t2) ∧ SameTitle(t1,t2)⇒ SameBib(bc1,bc2)

FB15K-237

position(B, A) ∧ position(C, B)⇒ position(C, A)
ceremony(B, A) ∧ ceremony(C, B)⇒ categoryOf(C, A)
film(B, A) ∧ film(C, B)⇒ participant(A, C)
storyBy(A, B)⇒ participant(A, B)
adjoins(A, B) ∧ country(B, C)⇒ serviceLocation(A, C)

20

	Introduction
	Knowledge Bases and Markov Logic Networks
	Challenges for Inference in Markov Logic Networks
	Graph Neural Network for Inference
	Is GNN Expressive Enough?
	Property of GNN
	GNN is expressive for feature representations in knowledge bases
	GNN is not expressive enough for posterior parametrization

	ExpressGNN: More Expressive GNN with Tunable Embeddings
	Experiments
	Ablation study and comparison to strong MLN inference methods
	Large-scale knowledge base completion

	Conclusion
	Proof of Theorems
	Counter Examples
	Example 1
	Example 2

	Experiment Settings
	Dataset Details
	Datasets statistics
	Synthetic Kinship Dataset

	Inference with Closed-World Semantics for Baseline Methods
	Logic Formulae

