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Abstract

Recently, pretrained language models (e.g., BERT) have achieved great success on
many downstream natural language understanding tasks and exhibit a certain level
of commonsense reasoning ability. However, their performance on commonsense
tasks is still far from that of humans. As a preliminary attempt, we propose a sim-
ple yet effective method to teach pretrained models with commonsense reasoning
by leveraging the structured knowledge in ConceptNet, the largest commonsense
knowledge base (KB). Specifically, the structured knowledge in KB allows us to
construct various logical forms, and then generate multiple-choice questions requir-
ing commonsense logical reasoning. Experimental results demonstrate that, when
refined on these training examples, the pretrained models consistently improve
their performance on tasks that require commonsense reasoning, especially in the
few-shot learning setting. Besides, we also perform analysis to understand which
logical relations are more relevant to commonsense reasoning.

1 Introduction

Recently, pretrained language models [4} [11,|19] have achieved great successes on various natural
language understanding tasks, and they are also believed to master a certain level of commonsense
reasoning abilities [9, (10, [17]. Equipping machines with commonsense reasoning ability has been
seen as one of the key milestones of artificial general intelligence [3]]. However, the commonsense
reasoning ability of these state-of-the-art pretrained models is still far away from that of humans [8
16]. One probable reason is that these models are learned from massive amounts of unstructured
texts with various language model (LM) objectives (e.g., masked language model [4]]). That is, the
commonsense reasoning capability is never explicitly taught to the pretrained models, but is implicitly
acquired through modeling input texts via LM objectives. In this paper, we focus on how to explicitly
teach the pretrained models the commonsense reasoning ability.

There are several challenges in explicitly injecting commonsense reasoning capability into pretrained
models. First, it is generally hard to exploit direct supervision signals for commonsense reasoning
from unstructured texts, and it is also expensive, if ever possible, to create a large amount of human-
labeled data for learning the commonsense reasoning ability. Second, the pretrained models do not
have explicit symbolic reasoning operations; instead, the reasoning is performed implicitly through
the neural network operations such as self-attention, and any knowledge relevant to reasoning is
stored in the network weights. Note that the weights are only learned to fit certain input-output
pairs, where the inputs to the model are natural language sentences, and the outputs are certain items
to predict (e.g., masked tokens, next sentence indicator). That is, any reasoning ability has to be
acquired implicitly by processing unstructured input texts during pretraining, and it is more difficult
to directly supervise the reasoning path for a pretrained model.
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Figure 1: The generation of logical forms and multiple-choice questions in our proposed approach.
The yellow and the red circles in the Venn diagram represent the sets R; and R, respectively.

To address these challenges, we propose a simple yet effective method to teach pretrained models
with explicit commonsense reasoning abilities. The key idea is to exploit the structured knowledge in
commonsense knowledge bases (e.g., ConceptNet [[13]) to generate multiple-choice questions that
require commonsense reasoning. Specifically, we sample subgraphs from KB to generate various
logical forms and then use text templates to generate natural language questions and candidate answers.
As aresult, we automatically generate a large-scale multiple-choice question answering dataset with
167 million questions that ask about specific logical relations between different entities/concepts.
These questions will be used as the additional training data to further refine the pretrained models,
which force them to learn the commonsense reasoning ability in order to answer correctly. These
training inputs are already in the natural language form, which is consistent with the input of
pretrained models. Therefore, it allows the model to continually adjust its pretrained weights so that
it can master more commonsense reasoning abilities; it naturally combines the power of pretrained
weights from unstructured texts and the new information from structured knowledge in KB. Our
experimental results show that the proposed approach consistently outperforms the baselines on
commonsense reasoning tasks, especially in few-shot learning settings. In addition, we examine
which logical relations are more “commonsense” and find that only a few simple ones are most
relevant. This work is as a preliminary attempt to integrate structured commonsense knowledge into
pretrained models with promising results. As we shall see, the structured knowledge in KB allows us
to systematically construct the logical relations that we want to teach the models. We hope that our
work could inspire more research towards combining structured knowledge and pretrained models.

2 The Proposed Approach

The key idea of our method is to generate multiple-choice questions from different subgraphs in KB,
and then we use the generated data to further refine the pretrained models. The overall idea of the
data generation process is shown in Figure[I} which consists of (i) generating different logical forms
from a sampled subgraph in KB, (ii) generating multiple-choice questions in natural language form.

2.1 Generating multiple-choice questions as the refinement data

Generating logical forms We first sample a subgraph from KB that is in the following form:

A Bt ) (1)

where A, B, and C are three different entities in the KB, and R; and R, represent two different
relations in the KB. For each of the above subgraph, we will construct a multiple-choice question
regarding the entity B in the following manner. First, introduce the following two sets: R1 = {X €

Q: A i>X }, Ro= {X cQ: X &> C}, where () denotes the entire entity set. Note that the set
R, represents the set of all (tail) entities that have relation Ry with A, and R represents the set of all
(head) entities that have relation Ry with entity C'. We use the two circles in the Venn diagram (Fig.
to represent these two sets, respectively. Note from Fig. [T] that the entire space could be partitioned
into four subsets, denoted as: S; = R1 MRS, S2 = R1 NRa, S3 = R{ NRa, &4 = R{NRS.
Each subset represents a certain logical relation. For example, the subset S = R1 N R2 means all
the entities that have relation Ry with A and have relation R, with C. Using these four subsets, we
could compose questions that ask about all different logical relations from the subgraph in (T). To see
this, note that we could compose a set by either choosing or not choosing each subset S;, which leads
to a total of 24 = 16 subsets. Among them, two trivial cases are excluded: the all-chosen case (full
set) and the all-not-chosen set (empty set). Therefore, there are a total of 14 different logical relations
about (1)) that we could ask (see Appendix [B|for all the 14 logical forms). To have a more concrete



example, consider the composed subset S; U S3, then we are examining the logical relation:
(A7) v (2 2 0)) A-((a 2 A (2 2 0)) @)

where A and V denotes logical AND and logical OR, respectively, and — denotes logical negation (NOT).
This approach allows us to systematically generate all different types of logical relations pertaining
to each sampled subgraph from the KB, which even covers questions about a single relation. For

example, the logical form corresponding to S1 U S is “A i>?”, and the logical form corresponding
to Sy U S3 is given by “7 [z, C”, which ask the tail entity and head entity, respectively.

Generating multiple-choice questions Now that once we have a logical form in the form of (2,
we can generate natural language questions that ask about this particular logical relation. We achieve
this by using text templates. Specifically, we first create two different types of mapping, namely,
affirmative mapping and negative mapping. The affirmative mapping is used to generate sentences
with affirmative questions, while the negative mapping is used for generating negative ones. Consider
the following specific example of a logical form (also shown in Figure|[I):
(alone Anti>nym ?) A\ (? capﬁfof sing in church)

where the correct answer for the missing entity is people. In the above logical form, the relation
CapableOf will be mapped into “is capable of” using affirmative mapping. On the other hand, when
there is a negation — before the relation CapableOf, it will be mapped into “is not capable of” using
a negative mapping. These obtained strings from relations will be put together with the head entities
and the tail entities to generate sentences as natural as possible by using a set of simple heuristic rules.
For example, the above logical relation will be mapped into the following natural language sentence:
“which of the following is an antonym of alone and meanwhile is capable of sing in church?” In
Appendix [B] we give examples of the possibly generated questions for all the 14 logical relations.

Generating candidate answers The correct answer is obtained from the particular logical form
that we want to examine. For example, if we want to generate a question regarding the logical form
@), the set of correct answer is given by S; U S3. On the other hand, for the wrong candidate answers,
we will examine three different sampling strategies. The first approach is to random sample from the
all the other entities in KB [[15]. The second one is the nearest sampling, which chooses the entity

from{X €Q: A Ay x ,VR # R;}. The third sampling method is uniform sampling: it firstly
chooses wrong subset uniformly from Sy, . .., Sy and then samples an entity from the selected subset.

2.2 Refinement: teaching the pretrained models with commonsense reasoning

To teach the pretrained models with commonsense reasoning, we further train the pretrained models
on the generated multiple-choice questions to predict the correct answer, which becomes a multi-class
classification problem. Afterwards, the model is finetuned on different downstream tasks. We name
this step as refinement to distinguish it from the pretraining and the finetuning stages.

3 Experiments

In this section, we examine the performance of the proposed method on different tasks and perform
analysis on which logical relations are more “commonsense”. First, we briefly describe the experi-
mental setting, and more details could be found in Appendix [A] We first preprocess ConceptNet and
keep 3,098,816 English-only triples. Then, we perform search on these triples and obtain a total of
167,395,947 subgraphs that are in the form of (I). These subgraphs would lead to over 167 million
multiple-choice questions for further refining the pretrained models. We use the uniform sampling
method to generate the wrong candidate answers unless otherwise stated. To evaluate the performance,
we finetune the refined models on three downstream tasks that require strong commonsense reasoning:
CommonsenseQA [16], CosmosQA (5], and DREAM [14]] (see Appendix@for the descriptions).

Few-Shot Learning Performance In Table|[I] we show the few-shot learning performance of our
proposed method on CommonsenseQA. We consider three different types of pretrained models:
BERT, GPT, and XL Net. We refine these models on our generated multiple-choice questions and then
finetune them on CommonsenseQA. We compare the results to the corresponding models without
the refinement process (i.e., directly finetuning on CommonsenseQA). Our method has significantly



better few-shot learning performance with as large as 18% absolute improvement, meaning that the
refinement process effectively teaches a pretrained model commonsense reasoning even with a few
finetuning samples. With full finetuning data, our method also achieves 2% gain. The above results
are obtained using the base models of BERT/XLNet. Additional experimental results in Appendix [C]
show that the same performance gain could carry over to their corresponding large models.

Table 1: The few-shot learning performance in accuracy (%) on the CommonsenseQA development
set. Shot percentages are listed in the parentheses. “model + refine” denotes our method. All results
are averaged over five independent runs, with standard deviations listed inside the parentheses.

Shot | 100(1.0%) 200 (2.1%) 400 (4.1%)  800(8.2%) 1600 (164%) 3200 (32.9%) | 9741 (100%)
BERT [4] 34.94(1.97)  3841(2.16)  41.73(2.02)  45.44(1.16)  47.53(1.15) 51.84(0.62) 57.33(1.03)
BERT +refine | 42.54(1.27) 44.93(1.69)  47.03(0.27)  50.58(0.64)  53.43(0.85) 54.86(0.75) | 59.28 (0.43)
GPT [11] 27.90(1.30)  28.34(1.39)  30.20(1.99)  33.96(2.53)  38.54(1.55) 45.45(0.65) 50.75(1.08)
GPT +refine | 37.69(0.27)  38.56(0.37)  40.49(0.50)  42.49(0.44)  44.24(0.58) 46.50(0.35) 51.52(0.62)
XLNet [19] 25.04(0.67)  27.44(1.08)  29.80(2.17)  34.27(0.89)  38.67(1.30) 47.14(1.25) 57.25(1.14)
XLNet +refine | 43.60(0.15)  43.67(0.24)  45.81(0.23)  47.24(047)  50.60(0.53) 53.41(0.32) 59.31(0.44)

Candidate answer sampling strategies In Table[2] we show the results of different strategies to
sample the wrong candidate answers on different datasets. We find that our method is relatively
insensitive to different sampling strategies, and the performance varies slightly over different datasets.

Table 2: Performance of different strategies to sample wrong candidate answers.

Dataset | Candidate answer selection | DREAM-dev.  DREAM-test | CommonsenseQA-dev | CosmosQA-dev

BERT _— 62.06(0.75) 61.98(0.79) 57.33(1.03) 58.34(0.82)
BERT + refine random sampliing 6349 (035)  62.89(0.36) 58.51(0.87) 58.66(0.26)
BERT + refine nearest sampling 63.02(0.23) 62.56(0.94) 58.97(0.76) 59.14(0.89)

Which logical relations are more “commonsense”? To partially answer this question, we refine
the pretrained BERT-base model on different subsets of logical relations from all the 14 logical froms
in Appendix [B]and report the results in Table[3] We observe that relatively simple logical relations
(#1, #2, #5) (i.e., simple logical AND and single relation reasoning) are more relevant to commonsense;
refining on just three of them achieves almost full performance (i.e., BERT + refine (all)). On the
other hand, the logical forms (#4, #7, #9), which require more logical compositions and negations,
are less commonsense; refining on them does not improve much over the baseline BERT model. This
is consistent with our intuition that commonsense should be something relatively straightforward.

Table 3: The relevance of different logical relations to commonsense. “BERT + refine (1,2,5)”” means
the pretrained BERT model is refined on the logical forms #1, #2, and #5 defined in Appendix

Method \ BERT \ BERT + refine (1,2,5) BERT + refine (2,4,5) BERT + refine (4,7,9) \ BERT + refine (all)
CommonsenseQA | 57.33(1.03) 59.10(0.43) 58.18(0.41) 56.42(0.82) 59.28(0.43)
CosmosQA 58.34(0.82) 59.28(0.81) 59.76(0.75) 58.86(0.74) 58.91(0.44)

4 Related Work

Structured knowledge [2| [13]] has been explored for question answering and reading comprehension.
Most existing methods [[1, 16} [7, 12 [14} (18} 21]] only exploit triples relevant to questions. [15] fine-tune
models on questions constructed by predicting the head or tail mention in a triple. Very recently, [20]]
propose to align triples to Wikipedia sentences to form natural language questions.

5 Conclusion

In this paper, we propose a simple yet effective method to use structured knowledge (i.e., ConceptNet)
to enhance the commonsense reasoning abilities of pretrained language models. The structured
knowledge in KB allows us to construct various logical forms, and then generate multiple-choice
questions that require commonsense logical reasoning. Experimental results demonstrate that, when
refined on these training examples, these models consistently improve their performance on three
datasets that require commonsense knowledge, especially in the few-shot learning setting. In the
future, we are interested in designing methods to generate more diverse natural language questions
instead of relying on patterns and evaluating on other recent models like ROBERTa.
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Supplementary Material

A Experimental Details

In this section, we describe more details of the experimental settings and the choice of hyper-
parameters.

A.1 Experiment details of the refinement process

Handling invalid logical forms. We find that some subgraphs (I sampled from KB could not
generate all the 14 logical forms in Appendix [B| For example, if &7 is an empty set for a specific
subgraph, logical form #0 is invalid. In our implementation, we create a specific 14-dimension
0/1-mask vector for each subgraph to indicate which logical forms are valid for sampling.

Efficiency considerations. In our implementation, we use the torch.utils.data.Dataset
class in PyTorch to generate the training data for the refinement process on-the-fly. We observe that
calculating Sy is relatively time-consuming because we have to remove all the elements in 51, So,
and S5 from the total set for each sampled subgraph. This can be a bottleneck for the dataloader and
will finally reduce the overall GPU utilization. To address this issue, we approximate Sy by the total
set in our experiments, which is an efficient and relatively accurate approximation. Note that since
the number of elements in Sy, Ss, and S3 is much smaller than that in the total set, the chance of
sampling an element from &1, Ss, and Ss is extremely small. Therefore, this could be an efficient
and good approximation to sampling from Sy.

Hyper-parameters for the refinement process. When we refine BERT, GPT, and XLNet, we only
train our models for one epoch. This is because we find that training too many iterations on our
generated multiple-choice question answering dataset may make the model forget the pretrained
language modeling capability and eventually hurt performance. We set the maximum sequence length
to be 40 during refinement as it covers most of the input texts for all three pretrained models, and we
set the optimizers and the learning rates to be the same as their default values. The learning rates are
settobe 2 x 1075, 6.25 x 107>, and 2 x 10~° for BERT, GPT, and XLNet, respectively. We do not
tune their hyper-parameters (e.g., learning rate) due to limited resources. Note that for GPT, language
model coefficient is set to be 0 during refining since we argue that the texts in our template datasets
may not be as natural as the ones used for pretraining.

Experimental setting for Table[3} For BERT + refine (all), we sample over all valid logical forms
according to a uniform distribution. For BERT + refine (1,2,5), BERT + refine (2,4,5), and BERT +
refine (4,7,9), logical forms are uniformly sampled over (#1, #2, #5), (#2, #4, #5), and (#4 , #7, #9),
respectively. The training procedures follow the same hyper-parameters described above. For the
finetuning process in all experiments, we train a model five times and report their mean values and
standard deviations.

A.2 Description of the downstream tasks

CommonsenseQA dataset consists of 12,247 questions with one correct answer and four wrong
answers. This dataset has two kinds of splits, namely token split and random split. Our ex-
periments are conducted on the official random split. For few-shot learning experiments, we
allow our models to train more epochs to make sure that they converge. Specifically, for
shot € {100, 200, 400, 800, 1600, 3200} , we train our models with epoch € {100, 50, 25,12, 8, 8},
respectively and keep other settings fixed. For training on the whole dataset, we follow similar settings
of officially released codeE] For a fair comparison between baselines and our refining methods, we
keep their epochs, batch sizes, and other settings the same. The only differences are parameters where
baselines utilize officially pretrained models, and ours use checkpoints during the proposed refining
processes.

Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading
comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over

*https://github.com/jonathanherzig/commonsenseqa/tree/master/bert,
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a diverse collection of people’s everyday narratives, asking questions concerning on the likely causes
or effects of events that require reasoning beyond the exact text spans in the contextﬂ Therefore, it is
an appropriate dataset for testing commonsense reasoning of models. We finetune baselines and our
proposed methods for four epochs with learning rate 2e-5 and batch size of 36. We evaluate models
on the development set in every epoch and report the best performance for each experiment.

DREAM is a multiple-choice dialogue-based machine reading comprehension examination dataset.
It focuses on in-depth multi-turn multi-party dialogue understanding. Answering 34% of these
questions needs commonsense reasoning. We adapt the officially released BERT-based source code
on DREAM and choose the same setting as the repositoryE] Similar to CosmosQA, we evaluate
development set in every epoch and report the best performance and its corresponding test set accuracy
for each experiment.

B All Logical Forms with Example Multiple-Choice Questions

In this appendix, we show all the 14 logical relations that could be sampled from a particular triple
pair, and the examples for the corrresponding generated multiple-choice questions. Specifically, we
consider the following example of triple pair:

. Antonym . ., RelatedTo .
(arise "% sit, sit  ——s " sit up)

Then, all the 14 logical forms and the corresponding example questions are given below, where the
correct answer is highlighted in red and bolded:

e logical form #0: &3

(ALL) A=(2 B2 0) 3)

Q: which of the following is an antonym of arise and meanwhile is not related to sit up ?
A: set

B: fancifying
C: storing space shuttle

e logical form #1: So

(AL A (2 22 0) )
Q: which of the following is an antonym of arise and meanwhile is related to sit up ?
A sit
B: sitting up
C: stand up

e logical form #2: S; U Sy

(A L49) (5)
Q: which of the following is an antonym of arise ?
A: promegapoietin

B: sleigher
C: set

e logical form #3: S3

(A BB A (7 B2 0) 6)

*https://leaderboard.allenai.org/cosmosqa/submissions/public.
5https ://github.com/nlpdata/mrc_bert_baseline,
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Q: which of the following is not an antonym of arise and meanwhile is related to sit up ?

A: craftist
B: queer anarchism
C: stand up

logical form #4: S; U S3
(a5 v (2 2 0)) A=((a )8 (2 22 0))

(7

Q: which of the following is an antonym of arise or is related to sit up, but not both of them ?

A: sit down
B: make refreshing dessert
C: lower

logical form #5: So U S3

EYe)
Q: which of the following is related to sit up ?
A: lay
B: sitting up
C: descend

logical form #6: S; U Sy US3

(A1) v (7 B )

Q: which of the following is an antonym of arise or is related to sit up ?
A: marksberrys

B: sit down

C: previsive

logical form #7: Sy
(A B A2 B3 0)

Q: which of the following is not an antonym of arise and is not related to sit up ?
A: crunch

B: millikin

C: sit

logical form #8: S; U Sy

~(7 % C)
Q: which of the following is not related to sit up ?
A: sit down
B: simpliciter
C: crunch

logical form #9: So U S,

(A7) a2 0)) v (~(a 52 A-(2 2 0))

®)

(€))

(10)

(1)

12)

Q: which of the following is an antonym of arise and is related to sit up, or neither of them ?

A: fall down
B: cremators
C: lower



e logical form #10: S; U Sa USy

(A 152y v -2 22 ) (13)

Q: which of the following is an antonym of arise or is not related to sit up ?
A: sitting up

B: sit down

C: stand up

e logical form #11: S3 U Sy

- (A E57) (14)
Q: which of the following is not an antonym of arise ?
A: lay down
B: free criminals
C: abed

e logical form #12: 1 U S3 USy

—(A B2y v-(2 B2 o) (15)
Q: which of the following is not an antonym of arise or is not related to sit up ?
A: sit down
B: sit down
C: snub line

e logical form #13: S U S5 U Sy

~(AE) v (2 B3 0) (16)
Q: which of the following is not an antonym of arise or is related to sit up ?
A: lower
B: fall
C: sit down

C Additional Experiments

In this section, we list additional experiments with the BERT-large model. All results are averaged
over five independent runs, with standard deviations listed inside the parentheses.

Table 4: Performance of our proposed method on BERT-large vs. on BERT-base, evaluated on the
DREAM dataset. The performance metric is prediction accuracy (%). The standard deviations are
listed inside the parenthesis.

Data Candidate answer selection DREAM-dev DREAM-test
BERT-base _— 62.06(0.75) 61.98(0.79)
BERT-base + refine random sampling 63.49(0.35) 62.89(0.36)
BERT-large __— 65.62(0.62) 66.07(1.00)
BERT-large + refine random sampling 67.11(0.48) 67.36(0.63)
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