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Abstract

In this paper, we propose a fully automated system to extend knowledge graphs
using external information from web-scale corpora. The designed system leverages
a deep learning based technology for relation extraction that can be trained by a
distantly supervised approach. In addition to that, the system uses a deep learning
approach for knowledge base completion by utilizing the global structure informa-
tion of the induced KG to further refine the confidence of the newly discovered
relations. The designed system does not require any effort for adaptation to new
languages and domains as it does not use any hand-labeled data, NLP analytics
and inference rules. Our experiments, performed on a popular academic bench-
mark demonstrate that the suggested system boosts the performance of relation
extraction by a wide margin, reporting error reductions of 50%, resulting in relative
improvement of up to 100%. Also, a web-scale experiment conducted to extend
DBPedia with knowledge from Common Crawl shows that our system is not only
scalable but also does not require any adaptation cost, while yielding substantial
accuracy gain.

1 Introduction

Knowledge graphs (KGs) are widely used in question answering and dialogue systems. Minimizing
the error rate in these graphs without sacrificing coverage of entities and relationships is essential for
improving the quality of these systems. In this paper we focus on the problem of identifying relations
among entities found in a large corpus with the goal of populating a pre-existing KG. Relation
Extraction (RE) from text is described as inducing new relationships between pre-identified entities
belonging to a predefined schema. Expanding the size and coverage of a knowledge graph with
relation extraction is a challenging process as it introduces noise and oftentimes requires a manual
process to clean it.
For example, an automatic system might have reasonably high confidence in the relationship
“SCHINDLER’S LIST - CANDIDATEFOR - BOOKER PRIZE” from the text “Thomas Keneally has been
shortlisted for Booker Prize in four different occasions, in 1972 for The Chant of Jimmie Blacksmith,
Gossip from the Forest in 1975, and Confederates in 1979, before winning the prize in 1982 with
Schindler’s Ark, later turned into the Oscar Award winning film Schindler’s List directed by Steven
Spielberg.” However, as illustrated in Figure 1, other extracted relationships might contradict this,
such as the fact that because STEVEN SPIELBERG directed SCHINDLER’S LIST, it follows that
SCHINDLER’S LIST ISA FILM and therefore it cannot be CANDIDATEFOR the BOOKER PRIZE,
which is a literary award. The first type of inference is equivalent to identify a new relation in a KG,
and it is typically referred to as link prediction, as illustrated by Figure 1. The second inference step
is equivalent to assess the confidence of an existing relation in the KG and it is typically referred to
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as Knowledge Base Validation (KBV). Both processes are very intimately related and interfere with
each other. In the example before, we needed to infer that SCHINDLER’S LIST ISA FILM from the
explicit information in order to detect the fact that SCHINDLER’S LIST cannot be candidate for the
BOOKER PRIZE.

Figure 1: Link Prediction and Knowledge Base
Validation example.

Humans are able to reconcile inconsistencies
like these at an almost subconscious level,
resulting in improved perception capabilities.
Unfortunately, this is not the case for most AI
systems and this is one of the main reasons why
pure NLP based approaches, whether pattern
based or deep learning based, typically perform
poorly on this task.
In this paper, we present an approach that
overcomes the aforementioned problem while
offering a scalable solution to extend large
Knowledge Graphs from web-scale corpora. It
consists of two main components: Relation
extraction, a deep learning based distantly
supervised system to detect relations from text;

Relation validation, a deep learning based knowledge base validation component able to spot
inconsistencies in the acquired graphs and improve the global quality. In order to operate these
components, the only required input is a partially-populated KG and a large scale document corpus.
In our experiments, we used DBpedia and Freebase for the KG and Common Crawl web text and
New York Times news articles for the document corpora.
To implement the RE component we applied a state of the art distantly supervised relation extraction
system, that is capable of recognizing relations among pre-identified entities using a deep neural
network approach [Glass et al., 2018]. Entity recognition is simply achieved by using a dictionary
matching approach in a large corpus without requiring an entity detection and linking system. As for
the Relation Validation (RV) component, we used a deep neural network approach trained from the
same KG as well as from the relations identified from text, adopting Knowledge Base Completion
(KBC) strategies.
The main contribution of this paper is that we show how combining distantly supervised solutions for
RE with KBC techniques trained on top of their output can largely boost the overall RE accuracy,
providing a scalable yet effective solution to extend their coverage. We describe a system combining
those two approaches in a single framework, and we apply it to the problem of extending KG from
web-scale corpora. In previous art, KBC has been applied to hand-crafted knowledge bases and not to
the result of the information extraction system. We empirically show how this combination improves
the quality of the induced knowledge by a large margin, improving the state of the art in a scalable
manner.
We tested our approach on three different KBP benchmarks: extending Freebase with knowledge
coming from NYT, extending DBpedia with knowledge coming from Common Crawl and refining
the result of pattern based Information Extraction systems used for the Never Ending Language
Learning (NELL) task. Our experiments show that the Validation step boosts the performance of RE
by a wide margin, reporting error reductions of 50%, sometimes resulting in relative improvement of
up to 100%.
The rest of the paper is structured as follows. The related work section describes the background in the
area of RE and KBC, as well as alternative approaches such as the application of probabilistic logic to
the validation of KBs. We then introduce our approach and provide a description of the RE system we
use for our experiments. The evaluation section describes the benchmarks and provides an extensive
evaluation of our framework, followed by an analysis of the reasoning behind its effectiveness. Finally,
we summarize the main research result and highlight possible directions for future work.

2 Related Work

Deep learning has been widely explored for the task of information extraction. Both CNN-based
[Zeng et al., 2014] and LSTM-based [Xu et al., 2015] models have been trained successfully for
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RE. Recently, cross sentence approaches have been explored by building paths connecting the two
identified arguments through related entities [Zeng et al., 2016]. The context aggregation approaches
of state-of-the-art neural models, max-pooling [Zeng et al., 2015] and attention [Lin et al., 2016]
allow multiple contexts to contribute to a predicted relation between two entities.
The efforts described above to aggregate information from different sentences are clearly a step
toward our goal of providing a global assessment of the validity of the recognized relation. However,
all the systems above lack the ability to handle global knowledge, for example, derived from sentences
involving other related entities, severely limiting their accuracy. One attempt to leverage background
knowledge to improve RE for Knowledge Base Population is the Universal Schema of Riedel et
al. [2013], where a matrix factorization approach uses evidence from both the ontology and text to
identify new relations. Universal Schema, by closely integrating the textual and knowledge base
evidence, limits the approaches to each. In contrast, by defining a symbolic layer to separate the
IE and KBC components, our approach is able to easily accommodate different implementations of
either the IE component or KBC component.
Probabilistic reasoning has been explored to validate the output of RE systems, including Markov
Logic Networks (MLN) [Richardson and Domingos, 2006] and Probabilistic Soft Logics (PSL).
For example, in the Never Ending Language Learning (NELL) project [Carlson et al., 2010], PSL
attempts to reconcile the output of IE systems, which provide heterogeneous and often contradicting
sources of evidence for some relations, with the constraints of the KB [Pujara et al., 2013]. However,
probabilistic reasoning based approaches require logical statements describing the target knowledge
schema such as domain and range constraints or taxonomies and ground truth of manually validated
facts, as entity-relation-entity triples, for training. After training is performed, a PSL or MLN system
is able to validate statements in a knowledge base, such as detecting inconsistencies. But on large
datasets, the systems often suffer from scalability problems.
Fact checking is another line of research related to knowledge base validation. A typical fact checking
system gathers more textual evidence for a given proposition through information retrieval, often a
web search [Gerber et al., 2015]. In contrast, our system builds a global model for the entities and
relations considering the interactions of the extractions rather than gathering more documents.
On the other hand, KBC technology has been developed to perform a similar function and has been
applied to knowledge bases curated by humans. State of the art KBC approaches are usually deep
learning based. They are trained using triples in the input KB as positive examples and generate
negative examples by random corruption of the training data. Popular KBC approaches are TransE
Bordes et al. [2013], RESCAL Nickel et al. [2011], Neural Tensor Network [Socher et al., 2013]
and HolE [Nickel et al., 2016]; whereas newer ones include ConvE [Dettmers et al., 2017], ConvKB
[Nguyen et al., 2017], KBGaN [Cai and Wang, 2017] as well as many others. In this paper we exploit
a variant of ProjE [Shi and Weninger, 2017] able to take noisy data with an associated confidence
score as an input. This is KBVIE , a core component of our KBP system.

3 Distantly Supervised Relation Extraction and Validation

In this section, we describe the architecture of our solution for Knowledge Base Population (KBP).
KBP is the task of identifying entities and relations from a corpus, according to a predefined schema.
It is illustrated by Figure 2, representing the architecture of our final KBP solution. It is composed by
a distantly supervised Information Extraction system that takes a pre-existing KB and a corpus as an
input and generates a list of quads representing induced relations with their associated confidence
scores. Its output is then merged with the triples in the pre-existing KG and fed into a KBC deep net
to train a KBV system whose goal is to re-assess the generated assertions, providing new confidence
scores for each of them. Finally, the scores are aggregated by a logistic regression layer that provides
the final confidence score for each triple. For all those steps, the same KB is always used for training.
More formally, the information extraction component of KBP generates a set of quads (triples with
confidence)QIE = q1, q2, ..., q

′
n from a corpora of text documentsC = c1, c2, ..., cm. Here, each text

document c is represented in the form of a sequence of words c = w1, ..., e1, wa, ...., wb, e2, ..., wz
containing two entity mentions e1 and e2. Quads have the form q = 〈e1, r, e2, s〉 where ei ∈ E are
entities found in the corpus, r ∈ R is a finite set of relations and s ∈ [0, 1] is a confidence score. We
define the function τ(〈e1, r, e2, s〉) = 〈e1, r, e2〉 to ignore the confidence of a quad, forming a triple.
Since KB is typically the Abox of a handcrafted ontology, we assume all the confidence scores of
quads in KB being equal to 1.
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Figure 2: Pipeline for our RE solution.

For each context c ∈ C the Entity Detection
and Linking (EDL) function ψ(c) =< e1, e2 >
returns the two entities contained in it. In our
current implementation EDL is implemented
by a simple string match w.r.t. the entities
in the KB, however, it could be also replaced
with more advanced EDL solutions if available.
For each entity e ∈ V , the function ψ(e)
returns all possible contexts where the entity
e appears in the corpus and ψ(e1, e2) returns
all contexts containing both. The RE process
consists on applying a deep net to the context
returned by ψ(e1, e2) for every pair of entities
that co-occur in the corpus. The result of the
application of RE to a context is a list of quads
q = 〈e1, ri, e2, si〉forallri ∈ R, where si
represents the confidence of the system on the detection of the relation ri in one or more contexts in
ψ(e1, e2), where the two entities co-occur in the corpus. Obviously, most of the relations will have
very low scores since all the relations are explored and returned for each pair.
The RE step takes into account mostly information coming from the corpus for each entity pair to
predict the relations, if any, between them. It doesn’t take into account global information provided
by the structure of the KG. The Relation Validation component is designed to overcome this problem.
It is formally described as a function KBV : E × R × E 7→ R. For any triple produced by IE,
(τ(q) : q ∈ QIE), KBV returns a confidence score.
The KBV system is to be trained from a knowledge graph KB consisting of a set of quads. In this
paper, we experimented with two different ways of training, producing two-component systems: (a)
KBV , using the ground truth from the knowledge graph KBtrain, and (b) KBVIE using the output
of information extraction QIE . The result is two different functions returning different confidence
scores when applied to the same triple.
The three confidence scores generated from IE and by applying KBV and KBVIE to every triple
from QIE are then aggregated using a confidence re-estimation layer trained on a validation set to
provide a final confidence score, generating the final output Qfinal. In the following subsection we
will describe the Distantly Supervised RE approach and the Knowledge Base Validation step into
details.

3.1 Relation Extraction

We use knowledge-level supervision, sometimes called distant supervision, to generate training
needed for deep learning based RE systems from a KG and an unannotated corpus.
To this aim, we first match all entities in KBtrain to gather their context sets. That context set
provides all the sentences that contain two entity mentions. If those two entities are related by some
relation in the input KG, they become positive examples for that binary relation.
We then use all the context sets collected from the corpus to train a deep learning based RE classifier.
We use the system of Glass et al. [2018] based on the PCNN model from NRE Lin et al. [2016].
It is worthwhile to notice here that for each entity pair we predict a probability distribution for all the
possible relations in our KB. To avoid generating a very large list of quads, a confidence threshold is
chosen below which quads are discarded before passing to the KBV system.
After the system is trained, it is applied to all context sets for every pair of entities in the corpus
C and generates a set of quads QIE , where for each pair of entities e1 and e2 up to |R| triples are
generated and associated with their confidence score. Minimum confidence is set for extracted quads
to control the size and quality of the output.

3.2 Relation Validation

We implement KBVIE using a deep network inspired by a state of the art KBC approach where
we modified the loss function in order to take into account the fuzzy truth values provided by the
output of IE. This network considers a set of quads QIE as the probabilistic knowledge graph for
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training and learns a function KBVIE(〈e1, r, e2〉) that returns a confidence score s for the triple at
hand. This score is informed by the global analysis of the knowledge graph Q differently from the
RE that uses the evidence from the corpus ψ(e1, e2) for the same purpose.
KBC algorithms are trained from a set of triples T , usually produced manually, wherein each entry
t ∈ T comprises two entities e1, e2 and a relation r. The KBC system assigns tensors to the entities
and relations and trains them by exploiting a Local Closed World Assumption.

Figure 3: Base ProjE softmax architecture for
KBC.

In this work, we use a state of the art model for
KBC, called ProjE softmax [Shi and Weninger,
2017]. A block diagram architecture of such
a model is shown in Figure 3. The network
is trained for each triple t in the training data
by providing an input vector representation for
the subject and the relation, while the output
of the network exploits a one-hot representation
encoding the probability for each possible object
in E . Negative examples are provided by a
random sampling of the objects.
However, this approach cannot be directly
applied to implement KBVIE because many
triples extracted by IE are actually not true. This
is usually reflected by a lower confidence score
associated with the triple. To overcome this
issue, we modified the loss function described in
Figure 3 (Box A) to use confidence scores, rather
than labels, following an approach proposed for
Computer Vision in Gong et al. [2013]. Let
us assume that the inputs are e1 and r, and the

system needs to predict appropriate e2. Let ve1,r (of dimensions |E| - number of entities in vocabulary)
represent the final layer of predicted probabilities corresponding to input entity e1 and input relation
r. Define a vector se1,r of dimensions |E| that uses the input confidence scores as follows,

se1,ri =

{
s, if 〈e1, r, ei, s〉 ∈ Q
0, otherwise

(1)

Recall that s represents the confidence score for the quad 〈e1, r, ei, s〉 ∈ Q. The modified loss
function is now the cross-entropy between the confidence vector and the prediction vector.

L = − 1

|Q|
∑
q∈Q

|E|∑
i=1

se1,ri log ve1,ri (2)

In Equation (2), the s vector is now a vector of confidence scores (rather than an one-hot encoding).
After the network is trained, it can be used for both link prediction (i.e. generating the object from
a subject and relation input) or validation (i.e. assessing the validity of a new triple composed of
known entities and relations). In this paper, we explore the second option.
The predictions of KBV and KBVIE make use of the embeddings of entities that are determined by
the training set. Embeddings for an entity can be effectively trained only when the number of triples
in which the entity appears meets some minimum threshold: three in our work. The KBC system
cannot provide a confidence estimate for triples involving entities that do not occur in the training set
or occur more rarely than the minimum threshold. This is a critical limitation of typical KBC systems,
which can only predict new relations between existing entities in the knowledge base. KBVIE solves
this issue by using the output of the IE system for training, which can include new entities.

3.3 Confidence Re-Estimation

The confidence scores sξ from the three systems ξ ∈ {IE,KBVIE ,KBV } are combined to produce
a final confidence for each triple τ(q) : q ∈ QIE , yielding Qfinal. This step uses a simple logistic
regression, typically trained on a validation set separate from the training set.
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Table 1: Knowledge Base Population dataset statistics

NYT-FB CC-DBP NELL-165

|QIE | 23,687 6,067,377 1,030,600
|KBKB | 15,417 381,046 2,928

|E| 17,122 545,887 820,003
|R| 13 298 222

We use four groups of features based on the confidence of each system: the raw confidence
itself frawξ = sξ, ξ ∈ {IE,KBVIE ,KBV }, the logit of the confidence f logitξ = log( 1

sξ
−

1), and binary features for what range the confidence is in f binβ , β ∈ {[0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8), [0.8, 1.0]}. If one of the entities occurs too few times, either in TKB for KBV
or QIE for KBVIE it will not have an embedding and therefore will not have a score from KBC. In
this case the re-estimation uses a binary feature to indicate the confidence from the system is missing
fmissingξ , ξ ∈ {KBVIE ,KBV }.
We also introduce a binary feature to indicate the relation in the triple to enable learning a per-relation
bias frelr , r ∈ R. Finally, we form quadratic features by adding a feature for the product of every pair
of features (captures basic interactions). L1 regularization is applied to reduce overfitting.

4 Evaluation
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Figure 4: Precision Recall
curves for CC-DBP
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curves for NELL

We tested our approach on three different KBP benchmarks: extending Freebase with knowledge
coming from NYT, extending DBpedia with knowledge coming from Common Crawl and refining
the result of pattern based Information Extraction systems used for the Never Ending Language
Learning (NELL) task. We choose the first task to provide a comparison with the existing state
of the art methods for RE, while we use the second benchmark to show the scalability aspect of
our approach. We chose the third task to compare the performances of our KBC approach w.r.t.
previously made alternative attempts to refine the output of IE system using probabilistic reasoning
methods. Benchmarks are described in subsection 4.1, evaluation is reported in Subsection 4.2 and
an analysis of the results is provided in 4.3.

4.1 Benchmarks

We used the following evaluation benchmarks (dataset statistics are summarized by Table 1):
NYT-FB: Extending Freebase with New York Times articles is a standard benchmark for distantly
supervised RE, developed by Riedel et al. [2010] and used in many subsequent works [Hoffmann et
al., 2011; Surdeanu et al., 2012; Zeng et al., 2015]. The text of New York Times was processed with
the Stanford NER system and the identified entities linked by name to Freebase. The task is to predict
the instances of 56 relations from the sentences mentioning two arguments. The state-of-the-art for
this dataset is NRE’s (Neural Relation Extraction) PCNN+ATT model (Piecewise Convolutional
Neural Network with Attention) [Lin et al., 2016].
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CC-DBP: Extending DBpedia with Web Crawls. This is a web-scale knowledge base population
benchmark that was introduced by Glass and Gliozzo [2018] and has been made publicly available.It
combines the text of Common Crawl with the triples from 298 frequent relations in DBpedia [Auer et
al., 2007]. Mentions of DBpedia entities are located in text by gazetteer matching of the preferred
label. This task is similar to NYT-FB but it has a much larger number of relations, triples, and textual
contexts.
NELL: Never-Ending Language Learning (NELL) [Carlson et al., 2010] is a system that starts from
a few “seed instances” of each type and relation, which then uses to extract candidate instances
from a large web corpus, using the current facts in the knowledge base as training examples. The
NELL research group released a snapshot of its accumulated knowledge at the 165th iteration, hereby
referred to as NELL-165 consisting of a set of triples with associated confidence scores coming from
different extractors. Later, Jiang et al. [2012] provide a manually validated set of triples divided into
train and test.
In the case of NELL, the ground truth is in the form of manually validated extractions provided by
Jiang et al. [2012]. In the cases of CC-DBP and NYT-FB, the ground truth for a triple is determined by
its presence or absence in DBpedia or Freebase respectively. This is a positive-unlabeled evaluation
and therefore precision is underestimated. In all cases, the recall is the correct percent of triples that
were extracted by the IE system above minimum confidence. This recall basis is logical in the case of
KBV, but note that KBV or KBVIE could also be used to predict triples outside the set extracted by
an IE system.

4.2 Results

To understand the impact of each component for our Distantly Supervised Relation Extraction and
Validation System system (RE, KBV and KBVIE) we report an ablation analysis: we train the
re-estimation component from a subset of the features and plot the precision/recall curve.
RE performance is illustrated by the three gray lines in Figure 6, 4 and 5. It is worthwhile to notice
that we used our deep learning based approach on CC-DBP and NYT-FB, which provides state of the
art results in those tasks. For NELL the reported results are obtained by using triples provided by the
NELL organizers and generated with their system.
Then, we trained both KBV and KBVIE for all the benchmarks. The training set for KBV ,
KBtrain, is derived by the triples validated by humans for NELL, whereas it consists of the
intersection of QIE with KBtrain for both CC-DBP and NYT-FB. In all cases, KBVIE is trained
on the output of the IE systems. Then we apply both systems to validate QIE , the output of the IE
system, generating two additional confidence scores.
Precision / Recall curves for those experiments are given in Figure 4, 5 and 6. Both KBVIE and
KBV largely improve the ranking of output triples, promoting the right ones on top. Remarkably,
KBVIE tends to perform better than KBV in spite of the fact that the latter uses manually curated
training triples from KBtrain, while the former uses the noisy output of the RE system.
Finally, we combined all three output scores: IE, KBVIE and KBV . Results are reported by the
blue line in the three PR curves. The blue line is consistently above all the other lines, showing that
there is some complementary signal from the three features. However, this improvement is marginal
compared to what provided by KBVIE alone. Table 2 provides the AUC for all the systems.

Table 2: Results: Area Under Precision
Recall Curve (AUC) on KBP Datasets

Approach NYT-FB CC-DBP NELL

IE 0.499 0.294 0.872
IE,KBV 0.609 0.636 0.931

IE,KBVIE 0.629 0.760 0.951
ALL 0.630 0.785 0.966

Table 3: KBP’s increased AUC by
minimum connectivity group

Min. Conn. NYT-FB CC-DBP NELL-Cat

[1, 2) -0.001 -0.002 N/A
[2, 4) 0.198 0.038 0.054
[4, 8) 0.265 0.210 0.049

[8, 16) 0.442 0.460 0.036
[16,∞) 0.377 0.634 0.084

The NYT-FB experiments shows clearly that our approach outperform state of the art solutions for
Distantly Supervised RE, represented by the performance of the RE component alone, by a large
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margin of 0.13 AUC improvement. However, NYT-FB is a relatively small benchmark, and might
not be a realistic setup to benchmark large scale solutions for KBP.
To demonstrate the scalability of our approach, the CC-DBP experiment is performed on a much larger
web scale corpus with hundreds of different relations. In these settings, the improvements over state
of the art Distantly Supervised RE solutions are even higher, reporting an absolute increase of AUC
of 0.491, reflecting on a relative improvement of 167% . This extraordinary boost in performances
can be explained by the fact that larger graphs tend to provide more valuable signal to the KBV
process, as demonstrated in the following Subsection.
Finally, the NELL experiment demonstrates how KBV can be an effective alternative to PSL on the
task of validating output of IE systems. It is worthwhile to notice that the best reported result on the
task of validating the output triples in NELL is 90.4 AUC, obtained by Pujara et al. [2013] using PSL.
This approach requires constraints from the KG schema and a sample of manually validated triples to
train from. In our unsupervised settings (i.e. using KBV trained on top of the result of RE only) we
achieve an improvement of +0.027 without even requiring constraints from the ontology. Remarkably,
in its supervised settings (i.e. when KBV is also trained from the available manually validated triples)
this solution performs much better than the PSL approach, achieving an AUC of 96.6%. This result is
particularly impressive because PSL requires constraints from the ontology such as taxonomies and
domain and range as well as supervised data, whereas KBV does not have any such requirements.

4.3 Analysis

A further analysis considers the improvement in the connectivity of the triples to the other triples
in the same group. Our hypothesis is that the KBV will improve the confidence score mostly for
statements containing entities that we know many facts about, enabling implicit reasoning.
To test this hypothesis, we define minimum connectivity for a triple to be the minimum of the number
of triples in which each argument is present. So triples with high minimum connectivity have
arguments with KBC embeddings that were influenced by many other triples. We group the triples by
their minimum connectivity and calculate the increase in AUC for IE,KBV,KBVIE relative to IE
alone for different buckets of triple minimum connectivity. Table 3 shows these results.
NYT-FB and CC-DBP, and to a lesser extent NELL, show a consistent picture, with increasing
minimum connectivity leading to the largest increases in performance. For NELL we excluded the
Cat relation, which connects an entity to its type since this relation behaves very differently. The
NELL Cat relation increases from 0.925 to 0.997 AUC.
This supports our hypothesis that KBV can improve RE through background knowledge. Since triples
with higher minimum connectivity interact with larger amounts of relevant background knowledge.

5 Conclusion and Future Work

In this paper, we introduced a novel approach to extend the coverage of knowledge graphs, consisting
of a combination of Relation Extraction and Knowledge Base Validation deep nets. This approach
can be applied to a wide range of information extraction systems as it does not make assumptions
about the knowledge representation, language and domain of the data. Experiments clearly show the
benefit of using this combined approach on the three different benchmarks, providing a significant
improvement over the state of the art solution based on distantly supervised RE only. The experiments
also demonstrate that the proposed system is highly scalable as we were able to apply it to a web
scale corpus and hundreds of relations. In addition, we show that the proposed Relation Validation
methods are more effective than alternatives based on Probabilistic Soft Logics while they do not
require neither ontological constraints nor manually supervised data.
For the future, we plan to explore the generative aspect of the KBC networks such as predicting
triples outside the set drawn from IE, with the goal of extracting implicit information from corpora. In
addition, we plan to explore this methodology to automatically induce KG in the context of enterprise
search engines, with the goal of generating infoboxes and a discovery experience over domain specific
document collections in any domain.
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